Carol A Loopstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7109478/publications.pdf

Version: 2024-02-01

30 papers 1,626 citations

³⁹⁴²⁸⁶
19
h-index

454834 30 g-index

32 all docs

 $\begin{array}{c} 32 \\ \text{docs citations} \end{array}$

times ranked

32

1778 citing authors

#	Article	IF	CITATIONS
1	Extensive Variation in Drought-Induced Gene Expression Changes Between Loblolly Pine Genotypes. Frontiers in Genetics, 2021, 12, 661440.	1.1	3
2	Toward genomic selection in $\langle i \rangle$ Pinus taeda $\langle i \rangle$: Integrating resources to support array design in a complex conifer genome. Applications in Plant Sciences, 2021, 9, e11439.	0.8	19
3	Detecting the genetic basis of local adaptation in loblolly pine (Pinus taeda L.) using whole exomeâ€wide genotyping and an integrative landscape genomics analysis approach. Ecology and Evolution, 2019, 9, 6798-6809.	0.8	25
4	Predicting Adaptive Genetic Variation of Loblolly Pine (Pinus taeda L.) Populations Under Projected Future Climates Based on Multivariate Models. Journal of Heredity, 2019, 110, 857-865.	1.0	12
5	Exploring the genetic basis of gene transcript abundance and metabolite levels in loblolly pine (Pinus) Tj ETQq1 1	0.784314	rgBT /Overlo
6	Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole-exome-discovered polymorphisms. Tree Genetics and Genomes, 2017, 13 , 1 .	0.6	29
7	Assessing the Gene Content of the Megagenome: Sugar Pine (<i>Pinus lambertiana</i>). G3: Genes, Genomes, Genetics, 2016, 6, 3787-3802.	0.8	51
8	Transcriptomic profile of leaf tissue from the leguminous tree, Millettia pinnata. Tree Genetics and Genomes, $2016,12,1.$	0.6	11
9	Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.). BMC Genomics, 2016, 17, 730.	1.2	53
10	Sequence of the Sugar Pine Megagenome. Genetics, 2016, 204, 1613-1626.	1.2	169
11	Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 2014, 15, R59.	13.9	424
12	Unique Features of the Loblolly Pine (<i>Pinus taeda</i> L.) Megagenome Revealed Through Sequence Annotation. Genetics, 2014, 196, 891-909.	1.2	207
13	Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms. Tree Physiology, 2013, 33, 763-774.	1.4	21
14	The Evolutionary Genetics of the Genes Underlying Phenotypic Associations for Loblolly Pine (<i>Pinus taeda</i> , Pinaceae). Genetics, 2013, 195, 1353-1372.	1.2	41
15	Natural variation in expression of genes involved in xylem development in loblolly pine (Pinus taeda) Tj ETQq1 1 C).784314 r 0.6	gBT /Overloc
16	MICROSATELLITE MARKERS FOR VERIFYING PARENTAGE OF PECANS. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 515B-515.	0.5	3
17	Real-time RT-PCR analysis of loblolly pine (Pinus taeda) arabinogalactan-protein and arabinogalactan-protein-like genes. Physiologia Plantarum, 2005, 124, 91-106.	2.6	27

Genes induced by WDS are differentially expressed in two populations of aleppo pine (Pinus) Tj ETQq0.0 0 rgBT /Overlock 10.18 50 62 To 0.6

#	Article	IF	CITATIONS
19	Seasonal variation in gene expression for loblolly pines (Pinus taeda) from different geographical regions. Tree Physiology, 2005, 25, 1063-1073.	1.4	40
20	Microarray analysis of genes preferentially expressed in differentiating xylem of loblolly pine (Pinus) Tj ETQq0 0 0) rgBT /Ov	erlock 10 Tf 5
21	An arabinogalactan protein associated with secondary cell wall formation in differentiating xylem of loblolly pine. Plant Molecular Biology, 2003, 52, 91-102.	2.0	65
22	Hormonal and developmental regulation of two arabinogalactan-proteins in xylem of loblolly pine (Pinus taeda). Physiologia Plantarum, 2000, 110, 524-529.	2.6	14
23	Purification and cloning of an arabinogalactan-protein from xylem of loblolly pine. Planta, 2000, 210, 686-689.	1.6	45
24	Sequences upstream and downstream of two xylem-specific pine genes influence their expression. Plant Science, 2000, 160, 77-86.	1.7	11
25	Two Pine Endo- $\hat{1}^2$ -1,4-Glucanases Are Associated with Rapidly Growing Reproductive Structures. Plant Physiology, 1998, 116, 959-967.	2.3	22
26	Xylem-specific gene expression in loblolly pine. Plant Molecular Biology, 1995, 27, 277-291.	2.0	65
27	Transient gene expression in differentiating pine wood using microprojectile bombardment. Canadian Journal of Forest Research, 1992, 22, 993-996.	0.8	15
28	Agrobacterium-mediated DNA transfer in sugar pine. Plant Molecular Biology, 1990, 15, 1-9.	2.0	54
29	Extended Host Range of Agrobacterium tumefaciens in the Genus Pinus. Plant Physiology, 1990, 92, 1226-1232.	2.3	67
30	Genetic diversity and population structure of <i>Picea</i> si>glaucaon an altitudinal gradient in interior Alaska. Canadian Journal of Forest Research, 1987, 17, 1519-1526.	0.8	43