Xiaohua Gou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	El Niño modulations over the past seven centuries. Nature Climate Change, 2013, 3, 822-826.	18.8	328
2	Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophysical Research Letters, 2006, 33, .	4.0	163
3	Drought reconstruction for North Central China from tree rings: the value of the Palmer drought severity index. International Journal of Climatology, 2007, 27, 903-909.	3.5	158
4	Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. International Journal of Climatology, 2007, 27, 1497-1503.	3.5	131
5	Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years. Science Bulletin, 2010, 55, 4179-4186.	1.7	111
6	Streamflow variations of the Yellow River over the past 593 years in western China reconstructed from tree rings. Water Resources Research, 2007, 43, .	4.2	108
7	Reconstructed droughts for the southeastern Tibetan Plateau over the past 568Âyears and its linkages to the Pacific and Atlantic Ocean climate variability. Climate Dynamics, 2010, 35, 577-585.	3.8	107
8	Treeâ€ring based drought reconstruction for the Guiqing Mountain (China): linkages to the Indian and Pacific Oceans. International Journal of Climatology, 2010, 30, 1137-1145.	3.5	98
9	Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China. Global and Planetary Change, 2012, 80-81, 190-197.	3.5	98
10	Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China. Climate Dynamics, 2015, 45, 1761-1770.	3.8	98
11	Asymmetric variability between maximum and minimum temperatures in Northeastern Tibetan Plateau: Evidence from tree rings. Science in China Series D: Earth Sciences, 2008, 51, 41-55.	0.9	72
12	Moisture variability across China and Mongolia: 1951–2005. Climate Dynamics, 2009, 32, 1173-1186.	3.8	71
13	Spatial drought reconstructions for central High Asia based on tree rings. Climate Dynamics, 2010, 35, 941-951.	3.8	68
14	An 850â€year treeâ€ringâ€based reconstruction of drought history in the western Qilian Mountains of northwestern China. International Journal of Climatology, 2015, 35, 3308-3319.	3.5	68
15	Annual precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains, northwestern China. International Journal of Climatology, 2011, 31, 371-381.	3.5	65
16	Tree-Ring Based Drought Reconstruction (A.D. 1855–2001) for the Qilian Mountains, Northwestern China. Tree-Ring Research, 2007, 63, 27-36.	0.6	64
17	Common tree growth anomalies over the northeastern Tibetan Plateau during the last six centuries: implications for regional moisture change. Global Change Biology, 2008, 14, 2096-2107.	9.5	60
18	Intra-annual radial growth of Schrenk spruce (Picea schrenkiana Fisch. et Mey) and its response to climate on the northern slopes of the Tianshan Mountains. Dendrochronologia, 2016, 40, 36-42.	2.2	56

#	Article	IF	CITATIONS
19	Tree-ring-based moisture variability in western Tianshan Mountains since A.D. 1882 and its possible driving mechanism. Agricultural and Forest Meteorology, 2016, 218-219, 267-276.	4.8	52
20	Changing relationships between tree growth and climate in Northwest China. Plant Ecology, 2009, 201, 39-50.	1.6	50
21	Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus. Agricultural and Forest Meteorology, 2018, 260-261, 9-16.	4.8	49
22	Precipitation variability during the past 400Âyears in the Xiaolong Mountain (central China) inferred from tree rings. Climate Dynamics, 2012, 39, 1697-1707.	3.8	47
23	Summer monsoon moisture variability over China and Mongolia during the past four centuries. Geophysical Research Letters, 2009, 36, .	4.0	46
24	Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region. Tree Physiology, 2018, 38, 840-852.	3.1	45
25	Patterns and dynamics of tree-line response to climate change in the eastern Qilian Mountains, northwestern China. Dendrochronologia, 2012, 30, 121-126.	2.2	44
26	Cambial phenology and xylogenesis of Juniperus przewalskii over a climatic gradient is influenced by both temperature and drought. Agricultural and Forest Meteorology, 2018, 260-261, 165-175.	4.8	44
27	Spatial patterns in the C:N:P stoichiometry in Qinghai spruce and the soil across the Qilian Mountains, China. Catena, 2021, 196, 104814.	5.0	44
28	Altitudinal variability of climate–tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau. Dendrochronologia, 2008, 26, 87-96.	2.2	42
29	Response of regional tree-line forests to climate change: evidence from the northeastern Tibetan Plateau. Trees - Structure and Function, 2009, 23, 1321-1329.	1.9	40
30	Aridity changes in the eastern Qilian Mountains since AD 1856 reconstructed from tree-rings. Quaternary International, 2013, 283, 78-84.	1.5	40
31	Climate–growth analysis of Qilian juniper across an altitudinal gradient in the central Qilian Mountains, northwest China. Trees - Structure and Function, 2013, 27, 379-388.	1.9	40
32	Forward modeling analyses of Qilian Juniper (Sabina przewalskii) growth in response to climate factors in different regions of the Qilian Mountains, northwestern China. Trees - Structure and Function, 2016, 30, 175-188.	1.9	37
33	Large-Scale Precipitation Variability over Northwest China Inferred from Tree Rings. Journal of Climate, 2011, 24, 3457-3468.	3.2	36
34	Estimating the criterion for determining water vapour sources of summer precipitation on the northern Tibetan Plateau. Hydrological Processes, 2006, 20, 505-513.	2.6	35
35	A 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau, China using tree-ring records. Science Bulletin, 2013, 58, 1107-1114.	1.7	35
36	Climate–growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains, northwest China. Trees - Structure and Function, 2017, 31, 429-439.	1.9	35

#	Article	IF	CITATIONS
37	Spatiotemporal drought variability of the eastern Tibetan Plateau during the last millennium. Climate Dynamics, 2017, 49, 2077-2091.	3.8	35
38	Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. Catena, 2021, 196, 104936.	5.0	33
39	Precipitation variations and possible forcing factors on the Northeastern Tibetan Plateau during the last millennium. Quaternary Research, 2014, 81, 508-512.	1.7	30
40	A tree ring-based record of annual mass balance changes for the TS.Tuyuksuyskiy Glacier and its linkages to climate change in the Tianshan Mountains. Quaternary Science Reviews, 2019, 205, 10-21.	3.0	30
41	Deciphering Human Contributions to Yellow River Flow Reductions and Downstream Drying Using Centuriesâ€Long Tree Ring Records. Geophysical Research Letters, 2019, 46, 898-905.	4.0	30
42	A comparison of tree-ring records and glacier variations over the past 700 years, northeastern Tibetan Plateau. Annals of Glaciology, 2006, 43, 86-90.	1.4	29
43	A 1232-YEAR TREE-RING RECORD OF CLIMATE VARIABILITY IN THE QILIAN MOUNTAINS, NORTHWESTERN CHINA. IAWA Journal, 2009, 30, 407-420.	2.7	28
44	Extended xylogenesis and stem biomass production in Juniperus przewalskii Kom. during extreme late-season climatic events. Annals of Forest Science, 2020, 77, 1.	2.0	27
45	Early-summer temperature variations over the past 563 yr inferred from tree rings in the Shaluli Mountains, southeastern Tibet Plateau. Quaternary Research, 2014, 81, 513-519.	1.7	25
46	Tree-ring recorded moisture variations over the past millennium in the Hexi Corridor, northwest China. Environmental Earth Sciences, 2017, 76, 1.	2.7	25
47	Spatiotemporal drought variability for central and eastern Asia over the past seven centuries derived from tree-ring based reconstructions. Quaternary International, 2013, 283, 107-116.	1.5	24
48	Dendroclimatic Response of <i>Picea crassifolia</i> along an Altitudinal Gradient in the Eastern Qilian Mountains, Northwest China. Arctic, Antarctic, and Alpine Research, 2013, 45, 491-499.	1.1	24
49	Drought reconstruction in the Qilian Mountains over the last two centuries and its implications for large-scale moisture patterns. Advances in Atmospheric Sciences, 2009, 26, 621-629.	4.3	23
50	Streamflow variability for the Aksu River on the southern slopes of the Tien Shan inferred from tree ring records. Quaternary Research, 2016, 85, 371-379.	1.7	23
51	Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China. Trees - Structure and Function, 2017, 31, 393-404.	1.9	23
52	Historical and future climates over the upper and middle reaches of the Yellow River Basin simulated by a regional climate model in CORDEX. Climate Dynamics, 2021, 56, 2749-2771.	3.8	23
53	Precipitation over the past four centuries in the Dieshan Mountains as inferred from tree rings: An introduction to an HHT-based method. Global and Planetary Change, 2013, 107, 109-118.	3.5	22
54	Climatic change in southern Kazakhstan since 1850 C.E. inferred from tree rings. International Journal of Biometeorology, 2020, 64, 841-851.	3.0	21

#	Article	IF	CITATIONS
55	Increasing climate sensitivity of subtropical conifers along an aridity gradient. Forest Ecology and Management, 2021, 482, 118841.	3.2	18
56	VARIATION OF RADIAL GROWTH PATTERNS IN TREES ALONG THREE ALTITUDINAL TRANSECTS IN NORTH CENTRAL CHINA. IAWA Journal, 2009, 30, 443-457.	2.7	17
57	Individual and time-varying tree-ring growth to climate sensitivity of Pinus tabuliformis Carr. and Sabina przewalskii Kom. in the eastern Qilian Mountains, China. Trees - Structure and Function, 2013, 27, 359-370.	1.9	17
58	Tree growth and time-varying climate response along altitudinal transects in central China. European Journal of Forest Research, 2010, 129, 1181-1189.	2.5	16
59	Influence of non-climatic factors on the relationships between tree growth and climate over the Chinese Loess Plateau. Global and Planetary Change, 2015, 132, 54-63.	3.5	16
60	Variations in leaf traits of Juniperus przewalskii from an extremely arid and cold environment. Science of the Total Environment, 2019, 689, 434-443.	8.0	16
61	Seasonal variations in leaf-level photosynthesis and water use efficiency of three isohydric to anisohydric conifers on the Tibetan Plateau. Agricultural and Forest Meteorology, 2021, 308-309, 108581.	4.8	16
62	Difference in Tree Growth Responses to Climate at the Upper Treeline: Qilian Juniper in the Anyemaqen Mountains. Journal of Integrative Plant Biology, 2008, 50, 982-990.	8.5	14
63	Spatiotemporal variability of tree growth and its association with climate over Northwest China. Trees - Structure and Function, 2012, 26, 1471-1481.	1.9	13
64	Treeâ€ f ing recorded drought variability in the northern Min Mountains of northwestern China. International Journal of Climatology, 2016, 36, 3550-3560.	3.5	13
65	Tree growth response of Fokienia hodginsii to recent climate warming and drought in southwest China. International Journal of Biometeorology, 2017, 61, 2085-2096.	3.0	13
66	Application of Picea wilsonii roots to determine erosion rates in eastern Qilian Mountains, Northwest China. Trees - Structure and Function, 2013, 27, 371-378.	1.9	11
67	Precipitation Distribution along the Qinghai-Xizang (Tibetan) Highway, Summer 1998. Arctic, Antarctic, and Alpine Research, 2008, 40, 761-769.	1.1	10
68	Radial growth response of Populus xjrtyschensis to environmental factors and a century-long reconstruction of summer streamflow for the Tuoshigan River, northwestern China. Ecological Indicators, 2016, 71, 191-197.	6.3	10
69	Separating temperature from precipitation signals encoded in tree-ring widths over the past millennium on the northeastern Tibetan Plateau, China. Quaternary Science Reviews, 2018, 193, 159-169.	3.0	10
70	Physiological and Growth Responses to Increasing Drought of an Endangered Tree Species in Southwest China. Forests, 2019, 10, 514.	2.1	10
71	Climatic control on the growth and regeneration of Juniperus przewalskii at alpine treeline in the eastern Qilian Mountains, northwest China. Trees - Structure and Function, 2021, 35, 1085-1097.	1.9	10
72	Tree growth and its association with climate between individual tree-ring series at three mountain ranges in north central China. Dendrochronologia, 2012, 30, 113-119.	2.2	9

#	Article	IF	CITATIONS
73	Analysis of reconstructed annual precipitation from tree-rings for the past 500 years in the middle Qilian Mountain. Science China Earth Sciences, 2012, 55, 770-778.	5.2	9
74	A method to separate temperature and precipitation signals encoded in tree-ring widths for the western Tien Shan Mountains, northwest China. Global and Planetary Change, 2015, 133, 141-148.	3.5	9
75	The unusual recent streamflow declines in the Bailong River, north-central China, from a multi-century perspective. Quaternary Science Reviews, 2021, 260, 106927.	3.0	9
76	Correlation between precipitation and temperature variations in the past 300 years recorded in Guliya ice core, China. Annals of Glaciology, 2006, 43, 137-141.	1.4	8
77	Unstable relationship between tree-ring δ18O in the transitional zone of the Asian summer monsoon and the Indian summer monsoon. Journal of Hydrology, 2020, 590, 125522.	5.4	8
78	Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review. Ecologies, 2021, 2, 313-331.	1.6	8
79	A half-millennium perspective on recent drying in the eastern Chinese Loess Plateau. Catena, 2022, 212, 106087.	5.0	8
80	Comparisons of drought variability between central High Asia and monsoonal Asia: Inferred from tree rings. Frontiers of Earth Science, 2010, 4, 277-288.	0.5	7
81	Soil nitrogen pool drives plant tissue traits in alpine treeline ecotones. Forest Ecology and Management, 2020, 477, 118490.	3.2	7
82	Warming-induced radial growth reduction in Betula albosinensis, eastern Qilian Mountains, China. Ecological Indicators, 2021, 120, 106956.	6.3	7
83	Temperature signals complicate tree-ring precipitation reconstructions on the northeastern Tibetan Plateau. Global and Planetary Change, 2021, 200, 103460.	3.5	7
84	Multi entury drought variability in the southern Min Mountains. International Journal of Climatology, 2020, 40, 3318-3329.	3.5	6
85	Spatial synchrony in δ180 time-series from a tree-ring network are driven by synchronous hydroclimate variability in the transitional zone of the Asian summer monsoon. Agricultural and Forest Meteorology, 2021, 311, 108687.	4.8	6
86	Wavelet analysis reveals periodic oscillations in a 1700 year ice-core record from Guliya, China. Annals of Glaciology, 2006, 43, 132-136.	1.4	5
87	Reconstruction of alpine snowfall in southern Kazakhstan based on oxygen isotopes in tree rings. Theoretical and Applied Climatology, 2022, 148, 727-737.	2.8	5
88	Tree-ring researches over the northwest China: a review. Frontiers of Earth Science, 2010, 4, 181-194.	0.5	4
89	THE ADVANCE OF DENDROCLIMATOLOGY IN ARID AREA OF NORTHWEST CHINA. Marine Geology & Quaternary Geology, 2013, 33, 25.	0.1	4
90	Whether increased waterâ€use efficiency of <i>Picea crassifolia</i> promotes radial growth of trees in the eastern Qilian Mountains. International Journal of Climatology, 2022, 42, 8201-8213.	3.5	1

#	Article	IF	CITATIONS
91	Nutrient allocation strategies of four conifers from semiarid to extremely arid environments. Plant Physiology and Biochemistry, 2022, 186, 257-265.	5.8	1