Susan C Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/710884/publications.pdf

Version: 2024-02-01

94 papers 12,185 citations

46984 47 h-index 94 g-index

98 all docs 98 docs citations 98 times ranked 15259 citing authors

#	Article	IF	CITATIONS
1	Global conservation outcomes depend on marine protected areas with five key features. Nature, 2014, 506, 216-220.	13.7	1,367
2	Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. Journal of Virology, 2013, 87, 7790-7792.	1.5	1,012
3	Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunology, 2011, 12, 137-143.	7.0	640
4	Retention Forestry to Maintain Multifunctional Forests: A World Perspective. BioScience, 2012, 62, 633-645.	2.2	633
5	The Papain-Like Protease of Severe Acute Respiratory Syndrome Coronavirus Has Deubiquitinating Activity. Journal of Virology, 2005, 79, 15189-15198.	1.5	482
6	Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 2013, 501, 539-542.	13.7	445
7	A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16119-16124.	3.3	407
8	Identification of Severe Acute Respiratory Syndrome Coronavirus Replicase Products and Characterization of Papain-Like Protease Activity. Journal of Virology, 2004, 78, 13600-13612.	1.5	400
9	RNA Replication of Mouse Hepatitis Virus Takes Place at Double-Membrane Vesicles. Journal of Virology, 2002, 76, 3697-3708.	1.5	379
10	Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5717-5722.	3.3	356
11	Regulation of IRF-3-dependent Innate Immunity by the Papain-like Protease Domain of the Severe Acute Respiratory Syndrome Coronavirus. Journal of Biological Chemistry, 2007, 282, 32208-32221.	1.6	348
12	REVIEW: Can retention forestry help conserve biodiversity? A metaâ€analysis. Journal of Applied Ecology, 2014, 51, 1669-1679.	1.9	314
13	Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4251-E4260.	3.3	297
14	Deubiquitinating and Interferon Antagonism Activities of Coronavirus Papain-Like Proteases. Journal of Virology, 2010, 84, 4619-4629.	1.5	267
15	Coronavirus Papain-like Proteases Negatively Regulate Antiviral Innate Immune Response through Disruption of STING-Mediated Signaling. PLoS ONE, 2012, 7, e30802.	1.1	236
16	Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8094-8103.	3.3	230
17	Structural Basis for the Ubiquitin-Linkage Specificity and delSGylating Activity of SARS-CoV Papain-Like Protease. PLoS Pathogens, 2014, 10, e1004113.	2.1	199
18	MERS-CoV papain-like protease has delSGylating and deubiquitinating activities. Virology, 2014, 450-451, 64-70.	1.1	198

#	Article	IF	CITATIONS
19	X-ray Structural and Biological Evaluation of a Series of Potent and Highly Selective Inhibitors of Human Coronavirus Papain-like Proteases. Journal of Medicinal Chemistry, 2014, 57, 2393-2412.	2.9	182
20	Discovery, Synthesis, And Structure-Based Optimization of a Series of <i>N</i> -(<i>tert</i> -Butyl)-2-(<i>N</i> -arylamido)-2-(pyridin-3-yl) Acetamides (ML188) as Potent Noncovalent Small Molecule Inhibitors of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3CL Protease. Journal of Medicinal Chemistry, 2013, 56, 534-546.	2.9	178
21	Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373, 931-936.	6.0	173
22	Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and delSGylating activities. Virus Research, 2014, 194, 184-190.	1.1	140
23	The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. Journal of General Virology, 2013, 94, 1554-1567.	1.3	137
24	Assessing Activity and Inhibition of Middle East Respiratory Syndrome Coronavirus Papain-Like and 3C-Like Proteases Using Luciferase-Based Biosensors. Journal of Virology, 2013, 87, 11955-11962.	1.5	130
25	Severe Acute Respiratory Syndrome Coronavirus Papain-like Novel Protease Inhibitors: Design, Synthesis, Proteinâ 'Ligand X-ray Structure and Biological Evaluation. Journal of Medicinal Chemistry, 2010, 53, 4968-4979.	2.9	129
26	An "Old―protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology, 2018, 517, 157-163.	1.1	122
27	Catalytic Function and Substrate Specificity of the Papain-Like Protease Domain of nsp3 from the Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2014, 88, 12511-12527.	1.5	116
28	Design and Synthesis of Peptidomimetic Severe Acute Respiratory Syndrome Chymotrypsin-like Protease Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6767-6771.	2.9	114
29	Structure-Based Design, Synthesis, and Biological Evaluation of a Series of Novel and Reversible Inhibitors for the Severe Acute Respiratory Syndromeâ Coronavirus Papain-Like Protease. Journal of Medicinal Chemistry, 2009, 52, 5228-5240.	2.9	110
30	Colocalization and Membrane Association of Murine Hepatitis Virus Gene 1 Products and De Novo-Synthesized Viral RNA in Infected Cells. Journal of Virology, 1999, 73, 5957-5969.	1.5	106
31	Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5684-5688.	1.0	99
32	The harvested side of edges: Effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. Forest Ecology and Management, 2013, 302, 107-121.	1.4	99
33	Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5876-5880.	1.0	94
34	Coronavirus Endoribonuclease Activity in Porcine Epidemic Diarrhea Virus Suppresses Type I and Type III Interferon Responses. Journal of Virology, 2019, 93, .	1.5	94
35	Membrane topology of murine coronavirus replicase nonstructural protein 3. Virology, 2007, 361, 391-401.	1.1	91
36	Processing of the Coronavirus MHV-JHM Polymerase Polyprotein: Identification of Precursors and Proteolytic Products Spanning 400 Kilodaltons of ORF1a. Virology, 1998, 242, 288-302.	1.1	88

3

#	Article	IF	CITATIONS
37	Coronavirus Infection Modulates the Unfolded Protein Response and Mediates Sustained Translational Repression. Journal of Virology, 2008, 82, 4492-4501.	1.5	88
38	Proteolytic Processing and Deubiquitinating Activity of Papain-Like Proteases of Human Coronavirus NL63. Journal of Virology, 2007, 81, 6007-6018.	1.5	87
39	Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 2015, 40, 1-13.	1.1	85
40	Coronaviruses Resistant to a 3C-Like Protease Inhibitor Are Attenuated for Replication and Pathogenesis, Revealing a Low Genetic Barrier but High Fitness Cost of Resistance. Journal of Virology, 2014, 88, 11886-11898.	1.5	81
41	A practical guide to DNA metabarcoding for entomological ecologists. Ecological Entomology, 2020, 45, 373-385.	1.1	75
42	Identification of Mouse Hepatitis Virus Papain-Like Proteinase 2 Activity. Journal of Virology, 2000, 74, 7911-7921.	1.5	69
43	Microclimate through space and time: Microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. Forest Ecology and Management, 2014, 334, 174-184.	1.4	65
44	The papain-like protease determines a virulence trait that varies among members of the SARS-coronavirus species. PLoS Pathogens, 2018, 14, e1007296.	2.1	64
45	The transcriptional profile of coronary arteritis in Kawasaki disease. BMC Genomics, 2015, 16, 1076.	1.2	63
46	Variable retention silviculture in Tasmania's wet forests: ecological rationale, adaptive management and synthesis of biodiversity benefits. Australian Forestry, 2011, 74, 218-232.	0.3	61
47	Evaluating spatial autocorrelation and depletion in pitfall-trap studies of environmental gradients. Journal of Insect Conservation, 2006, 10, 269-276.	0.8	60
48	SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway. Journal of Virology, 2021, 95, e0086221.	1.5	58
49	Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors. Antiviral Research, 2014, 101, 105-112.	1.9	51
50	Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral Pathogenesis. Journal of Virology, 2015, 89, 4907-4917.	1.5	50
51	Does clearfell, burn and sow silviculture mimic the effect of wildfire? A field study and review using litter beetles. Forest Ecology and Management, 2004, 199, 433-448.	1.4	45
52	Short-term responses of ground-active beetles to alternative silvicultural systems in the Warra Silvicultural Systems Trial, Tasmania, Australia. Forest Ecology and Management, 2009, 258, 444-459.	1.4	37
53	Biodiversity Consequences of Genetic Variation in Bark Characteristics within a Foundation Tree Species. Conservation Biology, 2009, 23, 1146-1155.	2.4	36
54	X-ray Structural and Functional Studies of the Three Tandemly Linked Domains of Non-structural Protein 3 (nsp3) from Murine Hepatitis Virus Reveal Conserved Functions. Journal of Biological Chemistry, 2015, 290, 25293-25306.	1.6	34

#	Article	IF	CITATIONS
55	X-ray Structure and Enzymatic Activity Profile of a Core Papain-like Protease of MERS Coronavirus with utility for structure-based drug design. Scientific Reports, 2017, 7, 40292.	1.6	33
56	Coronavirus Endoribonuclease and Deubiquitinating Interferon Antagonists Differentially Modulate the Host Response during Replication in Macrophages. Journal of Virology, 2020, 94, .	1.5	33
57	A footprint of treeâ€genetics on the biota of the forest floor. Oikos, 2009, 118, 1917-1923.	1.2	32
58	A Protein Epitope Targeted by the Antibody Response to Kawasaki Disease. Journal of Infectious Diseases, 2020, 222, 158-168.	1.9	31
59	Estimating edge effects on ground-dwelling beetles at clearfelled non-riparian stand edges in Tasmanian wet eucalypt forest. Forest Ecology and Management, 2007, 239, 92-101.	1.4	28
60	Analysis of Coronavirus Temperature-Sensitive Mutants Reveals an Interplay between the Macrodomain and Papain-Like Protease Impacting Replication and Pathogenesis. Journal of Virology, 2019, 93, .	1.5	28
61	A comparison of litter beetle assemblages (Coleoptera) in mature and recently clearfelled Eucalyptus obliqua forest. Australian Journal of Entomology, 2006, 45, 130-136.	1.1	27
62	Detecting SARS-CoV-2 3CLpro expression and activity using a polyclonal antiserum and a luciferase-based biosensor. Virology, 2021, 556, 73-78.	1.1	24
63	Inactivating Three Interferon Antagonists Attenuates Pathogenesis of an Enteric Coronavirus. Journal of Virology, 2020, 94, .	1.5	23
64	Burning outcomes following aggregated retention harvesting in old-growth wet eucalypt forests. Forest Ecology and Management, 2012, 276, 165-173.	1.4	20
65	Structure-Guided Mutagenesis Alters Deubiquitinating Activity and Attenuates Pathogenesis of a Murine Coronavirus. Journal of Virology, 2020, 94, .	1.5	20
66	Coronavirus infection induces progressive restructuring of the endoplasmic reticulum involving the formation and degradation of double membrane vesicles. Virology, 2021, 556, 9-22.	1.1	19
67	Impact of distance to mature forest on the recolonisation of bryophytes in a regenerating Tasmanian wet eucalypt forest. Australian Journal of Botany, 2013, 61, 633.	0.3	18
68	A Chimeric Virus-Mouse Model System for Evaluating the Function and Inhibition of Papain-Like Proteases of Emerging Coronaviruses. Journal of Virology, 2014, 88, 11825-11833.	1.5	18
69	Comparison of feeding efficiency, development time and survival of Tasmanian eucalyptus leaf beetle larvae Chrysophtharta bimaculata (Olivier) (Coleoptera: Chrysomelidae) on two hosts. Australian Journal of Entomology, 2002, 41, 174-181.	1.1	17
70	Why conservation reserves should not always be concentrated in riparian areas: A study of ground-dwelling beetles in wet eucalypt forest. Biological Conservation, 2006, 133, 156-168.	1.9	17
71	Inundative release of coccinellid beetles into eucalypt plantations for biological control of chrysomelid leaf beetles. Agricultural and Forest Entomology, 2003, 5, 97-106.	0.7	16
72	Using aerial photographs to remotely assess tree hollow availability. Biodiversity and Conservation, 2011, 20, 1089-1101.	1,2	16

#	Article	lF	CITATIONS
73	The effects of mechanical disturbance and burn intensity on the floristic composition of two-year old aggregated retention coupes in Tasmanian wet eucalypt forests. Forest Ecology and Management, 2012, 279, 55-65.	1.4	16
74	Allograft Inflammatory Factor-1 Links T-Cell Activation, Interferon Response, and Macrophage Activation in Chronic Kawasaki Disease Arteritis. Journal of the Pediatric Infectious Diseases Society, 2017, 6, e94-e102.	0.6	16
75	Breakthrough Infections with Multiple Lineages of SARS-CoV-2 Variants Reveals Continued Risk of Severe Disease in Immunosuppressed Patients. Viruses, 2021, 13, 1743.	1.5	15
76	Characterizing replication kinetics and plaque production of type I feline infectious peritonitis virus in three feline cell lines. Virology, 2018, 525, 1-9.	1.1	13
77	Identifying regrowth forests with advanced mature forest values. Forest Ecology and Management, 2019, 433, 73-84.	1.4	12
78	Calculating food consumption in the laboratory: A formula to adjust for natural weight loss. Australian Journal of Entomology, 2002, 41, 170-173.	1.1	10
79	Influence of Mature Overstory Trees on Adjacent 12-Year Regeneration and the Woody Understory: Aggregated Retention versus Intact Forest. Forests, 2017, 8, 31.	0.9	10
80	Bird assemblages in Tasmanian clearcuts are influenced by the age of eucalypt regeneration but not by distance from mature forest. Global Ecology and Conservation, 2014, 2, 138-147.	1.0	9
81	Timing and frequency are the critical factors affecting the impact of defoliation on long term growth of plantation eucalypts. Forest Ecology and Management, 2017, 391, 1-8.	1.4	9
82	Quantifying floristic and structural forest maturity: An attributeâ€based method for wet eucalypt forests. Journal of Applied Ecology, 2018, 55, 1668-1681.	1.9	9
83	<scp>DNA</scp> metabarcoding captures subtle differences in forest beetle communities following disturbance. Restoration Ecology, 2020, 28, 1475-1484.	1.4	9
84	Short-term responses of native rodents to aggregated retention in old growth wet Eucalyptus forests. Forest Ecology and Management, 2012, 267, 18-27.	1.4	8
85	Factors influencing initial vascular plant seedling composition following either aggregated retention harvesting and regeneration burning or burning of unharvested forest. Forest Ecology and Management, 2013, 306, 192-201.	1.4	8
86	Distance, environmental and substrate factors impacting recovery of bryophyte communities after harvesting. Applied Vegetation Science, 2018, 21, 64-75.	0.9	8
87	Relationships between coarse woody debris habitat quality and forest maturity attributes. Conservation Science and Practice, 2019, 1, e55.	0.9	6
88	Generating and evaluating type I interferon receptor-deficient and feline TMPRSS2-expressing cells for propagating serotype I feline infectious peritonitis virus. Virology, 2019, 537, 226-236.	1.1	6
89	Response of groundâ€dwelling beetles across logging coupe edges into streamside reserves. Australian Journal of Entomology, 2009, 48, 194-203.	1.1	5
90	The potential of trait-based approaches to contribute to marine conservation. Marine Policy, 2015, 51, 148-150.	1.5	5

Susan C Baker

#	Article	IF	CITATIONS
91	Development and utilization of an infectious clone for porcine deltacoronavirus strain USA/IL/2014/026. Virology, 2021, 553, 35-45.	1.1	5
92	Antibody Response to SARS-CoV-2 Infection and Vaccination in COVID-19-na \tilde{A} -ve and Experienced Individuals. Viruses, 2022, 14, 370.	1.5	5
93	The effectiveness of streamside versus upslope reserves in conserving log-associated bryophytes of native production forests. Forest Ecology and Management, 2016, 373, 66-73.	1.4	4
94	Retention forestry influences understory diversity and functional identity. Ecological Applications, 2020, 30, e02097.	1.8	4