
Evangelia Yannaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Safe and efficient inÂvivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. Molecular Therapy - Methods and Clinical Development, 2022, 24, 127-141.	4.1	19
2	Robust SARS-COV-2-specific T-cell immune memory persists long-term in immunocompetent individuals post BNT162b2 double shot. Heliyon, 2022, 8, e09863.	3.2	5
3	InÂVivo HSC Gene Therapy Using a Bi-modular HDAd5/35++ Vector Cures Sickle Cell Disease in a Mouse Model. Molecular Therapy, 2021, 29, 822-837.	8.2	44
4	Multipathogen-specific T cells against viral and fungal infections. Bone Marrow Transplantation, 2021, 56, 1445-1448.	2.4	6
5	In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Advances, 2021, 5, 1122-1135.	5.2	50
6	Vaccinated and Convalescent Donor–Derived Severe Acute Respiratory Syndrome Coronavirus 2–Specific T Cells as Adoptive Immunotherapy for High-Risk Coronavirus Disease 2019 Patients. Clinical Infectious Diseases, 2021, 73, 2073-2082.	5.8	15
7	Patient risk stratification and tailored clinical management of postâ€transplant CMVâ€, EBVâ€, and BKVâ€infections by monitoring virusâ€specific Tâ€cell immunity. EJHaem, 2021, 2, 428-439.	1.0	4
8	Reinforcing the Immunocompromised Host Defense against Fungi: Progress beyond the Current State of the Art. Journal of Fungi (Basel, Switzerland), 2021, 7, 451.	3.5	8
9	Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo. Blood, 2021, 138, 1540-1553.	1.4	16
10	Investigating the Barrier Activity of Novel, Human Enhancer-Blocking Chromatin Insulators for Hematopoietic Stem Cell Gene Therapy. Human Gene Therapy, 2021, 32, 1186-1199.	2.7	4
11	Success Stories and Challenges Ahead in Hematopoietic Stem Cell Gene Therapy: Hemoglobinopathies as Disease Models. Human Gene Therapy, 2021, 32, 1120-1137.	2.7	3
12	Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements. JCI Insight, 2020, 5, .	5.0	17
13	"Cerberus―T Cells: A Glucocorticoid-Resistant, Multi-Pathogen Specific T Cell Product to Fight Infections in Severely Immunocompromised Patients. Frontiers in Immunology, 2020, 11, 608701.	4.8	7
14	In Vivo HSC Gene Therapy for Hemoglobinopathies: A Proof of Concept Evaluation in Rhesus Macaques. Blood, 2020, 136, 46-47.	1.4	3
15	Clinical-scale production of Aspergillus-specific T cells for the treatment of invasive aspergillosis in the immunocompromised host. Bone Marrow Transplantation, 2019, 54, 1963-1972.	2.4	16
16	The ex vivo toll-like receptor 7 tolerance induction in donor lymphocytes prevents murine acute graft-versus-host disease. Cytotherapy, 2018, 20, 149-164.	0.7	3
17	In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia. Journal of Clinical Investigation, 2018, 129, 598-615.	8.2	43
18	A New Era for Hemoglobinopathies: More Than One Curative Option. Current Gene Therapy, 2018, 17, 364-378	2.0	9

#	Article	IF	CITATIONS
19	Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with β-Thalassemia Major. Molecular Therapy - Methods and Clinical Development, 2018, 10, 313-326.	4.1	83
20	The Functional Effect of Repeated Cryopreservation on Transduced CD34 ⁺ Cells from Patients with Thalassemia. Human Gene Therapy Methods, 2018, 29, 220-227.	2.1	7
21	Poor stem cell harvest may not always be related to poor mobilization: lessons gained from a mobilization study in patients with βâ€thalassemia major. Transfusion, 2017, 57, 1031-1039.	1.6	10
22	Optimizing autologous cell grafts to improve stem cell gene therapy. Experimental Hematology, 2016, 44, 528-539.	0.4	32
23	Adoptive transfer of Aspergillus-specific T cells as a novel anti-fungal therapy for hematopoietic stem cell transplant recipients: Progress and challenges. Critical Reviews in Oncology/Hematology, 2016, 98, 62-72.	4.4	33
24	Plerixafor+G-CSF–mobilized CD34+ cells represent an optimal graft source for thalassemia gene therapy. Blood, 2015, 126, 616-619.	1.4	45
25	Clinical-Scale Genome Editing of the Human BCL11A Erythroid Enhancer for Treatment of the Hemoglobinopathies. Blood, 2015, 126, 204-204.	1.4	7
26	Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World Journal of Gastroenterology, 2015, 21, 12334.	3.3	57
27	Superior Long-Term Repopulating Capacity of G-CSF+Plerixafor-Mobilized Blood: Implications for Stem Cell Gene Therapy by Studies in the Hbb ^{th-3} Mouse Model. Human Gene Therapy Methods, 2014, 25, 317-327.	2.1	14
28	Hematopoietic stem cells and liver regeneration: Differentially acting hematopoietic stem cell mobilization agents reverse induced chronic liver injury. Blood Cells, Molecules, and Diseases, 2014, 53, 124-132.	1.4	44
29	Current Status and Developments in Gene Therapy for Thalassemia and Sickle Cell Disease. Thalassemia Reports, 2014, 4, 75-80.	0.5	0
30	Hematopoietic Stem Cell Mobilization for Gene Therapy: Superior Mobilization by the Combination of Granulocyte–Colony Stimulating Factor Plus Plerixafor in Patients with β-Thalassemia Major. Human Gene Therapy, 2013, 24, 852-860.	2.7	49
31	Hematopoietic Stem Cell Mobilization for Gene Therapy of Adult Patients With Severe β-Thalassemia: Results of Clinical Trials Using G-CSF or Plerixafor in Splenectomized and Nonsplenectomized Subjects. Molecular Therapy, 2012, 20, 230-238.	8.2	58
32	The proteasome inhibitor bortezomib drastically affects inflammation and bone disease in adjuvantâ€induced arthritis in rats. Arthritis and Rheumatism, 2010, 62, 3277-3288.	6.7	50
33	Hematopoietic stem cell mobilization strategies for gene therapy of beta thalassemia and sickle cell disease. Annals of the New York Academy of Sciences, 2010, 1202, 59-63.	3.8	14
34	Strategy for a multicenter phase I clinical trial to evaluate globin gene transfer in βâ€ŧhalassemia. Annals of the New York Academy of Sciences, 2010, 1202, 52-58.	3.8	29
35	Mobilization of Hematopoietic Stem Cells in a Thalassemic Mouse Model: Implications for Human Gene Therapy of Thalassemia. Human Gene Therapy, 2010, 21, 299-310.	2.7	15
36	Gene therapy for β-thalassaemia: the continuing challenge. Expert Reviews in Molecular Medicine, 2010, 12, e31.	3.9	20

#	Article	IF	CITATIONS
37	Allografted Recipients Immunized Against Hepatitis B Virus are at High Risk of Gradual Surface Antibody (HbsAb) Disappearance Post Transplant, Regardless of Adoptive Immunity Transfer. Biology of Blood and Marrow Transplantation, 2007, 13, 1049-1056.	2.0	20
38	Lasting amelioration in the clinical course of decompensated alcoholic cirrhosis with boost infusions of mobilized peripheral blood stem cells. Experimental Hematology, 2006, 34, 1583-1587.	0.4	92
39	G-CSF–primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Experimental Hematology, 2005, 33, 108-119.	0.4	187
40	Topological Constraints Governing the Use of the Chicken HS4 Chromatin Insulator in Oncoretrovirus Vectors. Molecular Therapy, 2002, 5, 589-598.	8.2	65
41	Development of virus vectors for gene therapy of β chain hemoglobinopathies: flanking with a chromatin insulator reduces γ-globin gene silencing in vivo. Blood, 2002, 100, 2012-2019.	1.4	126