Daniel Sojka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108585/publications.pdf Version: 2024-02-01

DANIEL SOLKA

#	Article	IF	CITATIONS
1	New insights into the machinery of blood digestion by ticks. Trends in Parasitology, 2013, 29, 276-285.	3.3	171
2	Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1033-1038.	7.1	161
3	Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase Pathway by Functional Proteomics. Chemistry and Biology, 2009, 16, 1053-1063.	6.0	156
4	Babesia Life Cycle – When Phylogeny Meets Biology. Trends in Parasitology, 2019, 35, 356-368.	3.3	114
5	Fundamental Roles of the Golgi-Associated Toxoplasma Aspartyl Protease, ASP5, at the Host-Parasite Interface. PLoS Pathogens, 2015, 11, e1005211.	4.7	108
6	RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening. PLoS Neglected Tropical Diseases, 2010, 4, e850.	3.0	107
7	The Complexity of Piroplasms Life Cycles. Frontiers in Cellular and Infection Microbiology, 2018, 8, 248.	3.9	96
8	Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasites and Vectors, 2010, 3, 119.	2.5	88
9	IrAE – An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. International Journal for Parasitology, 2007, 37, 713-724.	3.1	79
10	IrAM—An α2-macroglobulin from the hard tick Ixodes ricinus: Characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Developmental and Comparative Immunology, 2009, 33, 489-498.	2.3	79
11	Acquisition of exogenous haem is essential for tick reproduction. ELife, 2016, 5, .	6.0	78
12	Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasites and Vectors, 2008, 1, 7.	2.5	71
13	Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biological Chemistry, 2006, 387, 1635-44.	2.5	64
14	Molecular cloning, structure and bait region splice variants of α2-macroglobulin from the soft tick Ornithodoros moubata. Insect Biochemistry and Molecular Biology, 2003, 33, 841-851.	2.7	60
15	Aza-peptidyl Michael Acceptors. A New Class of Potent and Selective Inhibitors of Asparaginyl Endopeptidases (Legumains) from Evolutionarily Diverse Pathogens. Journal of Medicinal Chemistry, 2008, 51, 2816-2832.	6.4	42
16	IrCL1 – The haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. International Journal for Parasitology, 2011, 41, 1253-1262.	3.1	40
17	Characterization of Gut-associated Cathepsin D Hemoglobinase from Tick Ixodes ricinus (IrCD1). Journal of Biological Chemistry, 2012, 287, 21152-21163.	3.4	36
18	Multienzyme degradation of host serum albumin in ticks. Ticks and Tick-borne Diseases, 2016, 7, 604-613.	2.7	34

DANIEL SOJKA

#	Article	IF	CITATIONS
19	Aza-Peptidyl Michael Acceptor and Epoxide Inhibitors—Potent and Selective Inhibitors of Schistosoma mansoni and Ixodes ricinus Legumains (Asparaginyl Endopeptidases). Journal of Medicinal Chemistry, 2009, 52, 7192-7210.	6.4	33
20	Cysteine Proteases from Bloodfeeding Arthropod Ectoparasites. Advances in Experimental Medicine and Biology, 2011, 712, 177-191.	1.6	30
21	Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets. Trends in Parasitology, 2016, 32, 708-723.	3.3	25
22	Multiple legumain isoenzymes in ticks. International Journal for Parasitology, 2018, 48, 167-178.	3.1	15
23	Novel Structural Mechanism of Allosteric Regulation of Aspartic Peptidases via an Evolutionarily Conserved Exosite. Cell Chemical Biology, 2018, 25, 318-329.e4.	5.2	14
24	Validation of Babesia proteasome as a drug target. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 394-402.	3.4	13
25	Protease Inhibition—An Established Strategy to Combat Infectious Diseases. International Journal of Molecular Sciences, 2021, 22, 5762.	4.1	12
26	Mialostatin, a Novel Midgut Cystatin from Ixodes ricinus Ticks: Crystal Structure and Regulation of Host Blood Digestion. International Journal of Molecular Sciences, 2021, 22, 5371.	4.1	10
27	Plasmepsin-Like Aspartyl Proteases in Babesia. Pathogens, 2021, 10, 1241.	2.8	8
28	Design, synthesis, and <i>inÂvitro</i> evaluation of aza-peptide aldehydes and ketones as novel and selective protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1387-1402.	5.2	6
29	Haem-responsive gene transporter enables mobilization of host haem in ticks. Open Biology, 2021, 11, 210048.	3.6	6
30	Comparison of the hemolysis machinery in two evolutionarily distant blood-feeding arthropod vectors of human diseases. PLoS Neglected Tropical Diseases, 2021, 15, e0009151.	3.0	2
31	Tick Blood Digestion. , 2016, , 2687-2690.		0