Yiannis Georgiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108579/publications.pdf

Version: 2024-02-01

516561 713332 21 598 16 21 citations h-index g-index papers 21 21 21 999 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Double-Nozzle Flame Spray Pyrolysis as a Potent Technology to Engineer Noble Metal-TiO2 Nanophotocatalysts for Efficient H2 Production. Energies, 2021, 14, 817.	1.6	12
2	ZnO, Ag and ZnO-Ag nanoparticles exhibit differential modes of toxic and oxidative action in hemocytes of mussel Mytilus galloprovincialis. Science of the Total Environment, 2021, 767, 144699.	3.9	13
3	Copper-promoted ceria catalysts for CO oxidation reaction. Catalysis Today, 2020, 355, 647-653.	2.2	21
4	Controlled-Phase Synthesis of Bi2Fe4O9 & SiFeO3 by Flame Spray Pyrolysis and their evaluation as non-noble metal catalysts for efficient reduction of 4-nitrophenol. Powder Technology, 2020, 368, 268-277.	2.1	25
5	A Hybrid {Silk@Zirconium MOF} Material as Highly Efficient Aslll-sponge. Scientific Reports, 2020, 10, 9358.	1.6	6
6	Assessing the cyto-genotoxic potential of model zinc oxide nanoparticles in the presence of humic-acid-like-polycondensate (HALP) and the leonardite HA (LHA). Science of the Total Environment, 2020, 721, 137625.	3.9	7
7	Thermoplasmonic Heat Generation Efficiency by Nonmonodisperse Core–Shell Ag0@SiO2 Nanoparticle Ensemble. Journal of Physical Chemistry C, 2019, 123, 22499-22510.	1.5	24
8	Tuning the Catalytic Properties of Copper-Promoted Nanoceria via a Hydrothermal Method. Catalysts, 2019, 9, 138.	1.6	26
9	Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N,F-TiO2: Interplay between CdS photo corrosion and TiO2-dopping. Applied Catalysis B: Environmental, 2019, 254, 194-205.	10.8	86
10	Mesoporous spinel CoFe ₂ O ₄ as an efficient adsorbent for arsenite removal from water: high efficiency <i>via</i> viacontrol of the particle assemblage configuration. Environmental Science: Nano, 2019, 6, 1156-1167.	2.2	16
11	Highly Efficient Arsenite [As(III)] Adsorption by an [MIL-100(Fe)] Metal–Organic Framework: Structural and Mechanistic Insights. Journal of Physical Chemistry C, 2018, 122, 4859-4869.	1.5	30
12	Molecular Mn-catalysts grafted on graphitic carbon nitride (gCN): The behavior of gCN as support matrix in oxidation reactions. Polyhedron, 2018, 153, 41-50.	1.0	8
13	Cu ²⁺ sorption from aqueous media by a recyclable Ca ²⁺ framework. Inorganic Chemistry Frontiers, 2017, 4, 773-781.	3.0	37
14	Magnetic Carbon Nanocages: An Advanced Architecture with Surface- and Morphology-Enhanced Removal Capacity for Arsenites. ACS Sustainable Chemistry and Engineering, 2017, 5, 5782-5792.	3.2	31
15	Recycled-tire pyrolytic carbon made functional: A high-arsenite [As(III)] uptake material PyrC 350 ®. Journal of Hazardous Materials, 2017, 326, 177-186.	6.5	21
16	Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (AsIII) uptake: The evolution of the Fe-phases under ambient conditions. Journal of Hazardous Materials, 2016, 312, 243-253.	6.5	17
17	Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 2015, 93, 636-647.	5.4	89
18	Hybrid [polysulfone–Zero Valent Iron] membranes: Synthesis, characterization and application for AsIII remediation. Chemical Engineering Journal, 2015, 281, 651-660.	6.6	24

#	Article	IF	CITATIONS
19	A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake. Journal of Hazardous Materials, 2014, 270, 118-126.	6.5	17
20	Novel Ordered Mesoporous Carbon with Innate Functionalities and Superior Heavy Metal Uptake. Journal of Physical Chemistry C, 2013, 117, 16961-16971.	1.5	20
21	A novel bentonite-humic acid composite material Bephosâ,¢ for removal of phosphate and ammonium from eutrophic waters. Chemical Engineering Journal, 2013, 225, 43-51.	6.6	68