Angelo Parini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108557/publications.pdf

Version: 2024-02-01

61984 79698 5,957 126 43 73 citations h-index g-index papers 133 133 133 7622 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kidney inflammaging is promoted by CCR2+ macrophages and tissue-derived micro-environmental factors. Cellular and Molecular Life Sciences, 2021, 78, 3485-3501.	5.4	13
2	Selective Cardiomyocyte Oxidative Stress Leads to Bystander Senescence of Cardiac Stromal Cells. International Journal of Molecular Sciences, 2021, 22, 2245.	4.1	7
3	Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Research Reviews, 2021, 66, 101256.	10.9	44
4	Low-energy electron beam sterilization of solid alginate and chitosan, and their polyelectrolyte complexes. Carbohydrate Polymers, 2021, 261, 117578.	10.2	7
5	Cardiac macrophage subsets differentially regulate lymphatic network remodeling during pressure overload. Scientific Reports, 2021, 11, 16801.	3.3	21
6	The INSPIRE research initiative: a program for GeroScience and healthy aging research going from animal models to humans and the healthcare system. Journal of Frailty & Ding, the, 2021, 10, 1-8.	1.3	30
7	The INSPIRE Bio-resource Research Platform for Healthy Aging and Geroscience: Focus on the Human Translational Research Cohort (The INSPIRE-T Cohort). Journal of Frailty & Direction (1), 1-11.	1.3	17
8	Towards a large-scale assessment of the relationship between biological and chronological aging: The INSPIRE Mouse Cohort. Journal of Frailty & Damp; Aging, the, 2021, 10, 1-11.	1.3	9
9	REVISITING THE HALLMARKS OF AGING TO IDENTIFY MARKERS OF BIOLOGICAL AGE. journal of prevention of Alzheimer's disease, The, 2020, 7, 1-9.	2.7	56
10	Mitochondrial 4-HNE derived from MAO-A promotes mitoCa2+ overload in chronic postischemic cardiac remodeling. Cell Death and Differentiation, 2020, 27, 1907-1923.	11.2	51
11	Extracellular vesicles of MSCs and cardiomyoblasts are vehicles for lipid mediators. Biochimie, 2020, 178, 69-80.	2.6	14
12	Rational Redesign of Monoamine Oxidase A into a Dehydrogenase to Probe ROS in Cardiac Aging. ACS Chemical Biology, 2020, 15, 1795-1800.	3.4	12
13	Cardiac monoamine oxidases: at the heart of mitochondrial dysfunction. Cell Death and Disease, 2020, 11, 54.	6.3	10
14	ICFSR TASK FORCE PERSPECTIVE ON BIOMARKERS FOR SARCOPENIA AND FRAILTY. Journal of Frailty & Emp; Aging, the, 2020, 9, 1-5.	1.3	28
15	In the heart of cardiac stromal senescence. Aging, 2020, 12, 1039-1041.	3.1	1
16	Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90Â+Âsubset. Aging Cell, 2019, 18, e13015.	6.7	31
17	Alginate-chitosan PEC scaffolds: A useful tool for soft tissues cell therapy. International Journal of Pharmaceutics, 2019, 571, 118692.	5.2	24
18	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	7.8	307

#	Article	IF	Citations
19	Vasohibin 1, a new mouse cardiomyocyte IRES trans-acting factor that regulates translation in early hypoxia. ELife, 2019, 8 , .	6.0	19
20	Tight-Binding Inhibition of Human Monoamine Oxidase B by Chromone Analogs: A Kinetic, Crystallographic, and Biological Analysis. Journal of Medicinal Chemistry, 2018, 61, 4203-4212.	6.4	58
21	Therapeutic Benefit and Gene Network Regulation by Combined Gene Transfer of Apelin, FGF2, and SERCA2a into Ischemic Heart. Molecular Therapy, 2018, 26, 902-916.	8.2	20
22	Local production of tenascin-C acts as a trigger for monocyte/macrophage recruitment that provokes cardiac dysfunction. Cardiovascular Research, 2018, 114, 123-137.	3.8	38
23	Oleuropein Aglycone Protects against MAO-A-Induced Autophagy Impairment and Cardiomyocyte Death through Activation of TFEB. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	4.0	35
24	Monoamine oxidase-A, serotonin and norepinephrine: synergistic players in cardiac physiology and pathology. Journal of Neural Transmission, 2018, 125, 1627-1634.	2.8	32
25	Monoamine oxidaseâ€A is a novel driver of stressâ€induced premature senescence through inhibition of parkinâ€mediated mitophagy. Aging Cell, 2018, 17, e12811.	6.7	78
26	Multimodal gadolinium oxysulfide nanoparticles: a versatile contrast agent for mesenchymal stem cell labeling. Nanoscale, 2018, 10, 16775-16786.	5.6	20
27	Elaboration and evaluation of alginate foam scaffolds for soft tissue engineering. International Journal of Pharmaceutics, 2017, 524, 433-442.	5.2	30
28	Inhibition of PIKfyve prevents myocardial apoptosis and hypertrophy through activation of SIRT3 in obese mice. EMBO Molecular Medicine, 2017, 9, 770-785.	6.9	30
29	Monoamine Oxidases, Oxidative Stress, and Altered Mitochondrial Dynamics in Cardiac Ageing. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	4.0	76
30	Apelinâ€13 administration protects against ischaemia/reperfusionâ€mediated apoptosis through the FoxO1 pathway in highâ€fat dietâ€induced obesity. British Journal of Pharmacology, 2016, 173, 1850-1863.	5.4	53
31	Intramyocardial transplantation of mesenchymal stromal cells for chronic myocardial ischemia and impaired left ventricular function: Results of the MESAMI 1 pilot trial. International Journal of Cardiology, 2016, 209, 258-265.	1.7	65
32	Oxidative Stress by Monoamine Oxidase-A Impairs Transcription Factor EB Activation and Autophagosome Clearance, Leading to Cardiomyocyte Necrosis and Heart Failure. Antioxidants and Redox Signaling, 2016, 25, 10-27.	5.4	76
33	Apelin regulates FoxO3 translocation to mediate cardioprotective responses to myocardial injury and obesity. Scientific Reports, 2015, 5, 16104.	3.3	36
34	Promoter-Dependent Translation Controlled by p54nrb and hnRNPM during Myoblast Differentiation. PLoS ONE, 2015, 10, e0136466.	2.5	19
35	Platelet activation and arterial peripheral serotonin turnover in cardiac remodeling associated to aortic stenosis. American Journal of Hematology, 2015, 90, 15-19.	4.1	26
36	Structural apelin analogues: mitochondrial <scp>ROS</scp> inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. British Journal of Pharmacology, 2015, 172, 2933-2945.	5.4	51

3

#	Article	IF	CITATIONS
37	Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin. International Journal of Obesity, 2015, 39, 312-320.	3.4	38
38	Gadd $45 < i > \hat{l}^3 < /i > regulates cardiomyocyte death and post-myocardial infarction left ventricular remodelling. Cardiovascular Research, 2015, 108, 254-267.$	3.8	39
39	Sphingosine kinase 1 expressed by endothelial colony-forming cells has a critical role in their revascularization activity. Cardiovascular Research, 2014, 103, 121-130.	3.8	38
40	Monoamine oxidases as sources of oxidants in the heart. Journal of Molecular and Cellular Cardiology, 2014, 73, 34-42.	1.9	197
41	Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment. Acta Biomaterialia, 2014, 10, 901-911.	8.3	51
42	CD4 ⁺ T Cells Promote the Transition From Hypertrophy to Heart Failure During Chronic Pressure Overload. Circulation, 2014, 129, 2111-2124.	1.6	223
43	Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice. Journal of Neural Transmission, 2013, 120, 927-935.	2.8	31
44	Difference in mobilization of progenitor cells after myocardial infarction in smoking versus non-smoking patients: insights from the BONAMI trial. Stem Cell Research and Therapy, 2013, 4, 152.	5 . 5	18
45	Anesthetic regimen for cardiac function evaluation by echocardiography in mice: comparison between ketamine, etomidate and isoflurane versus conscious state. Laboratory Animals, 2013, 47, 284-290.	1.0	29
46	First Evidence of Increased Plasma Serotonin Levels in Tako-Tsubo Cardiomyopathy. BioMed Research International, 2013, 2013, 1-5.	1.9	9
47	p53-PGC-1α Pathway Mediates Oxidative Mitochondrial Damage and Cardiomyocyte Necrosis Induced by Monoamine Oxidase-A Upregulation: Role in Chronic Left Ventricular Dysfunction in Mice. Antioxidants and Redox Signaling, 2013, 18, 5-18.	5.4	117
48	Cardiac Fibroblasts Regulate Sympathetic Nerve Sprouting and Neurocardiac Synapse Stability. PLoS ONE, 2013, 8, e79068.	2.5	17
49	Intraparenchymal Injection of Bone Marrow Mesenchymal Stem Cells Reduces Kidney Fibrosis after Ischemia-Reperfusion in Cyclosporine-Immunosuppressed Rats. Cell Transplantation, 2012, 21, 2009-2019.	2.5	70
50	Alginate Scaffolds for Mesenchymal Stem Cell Cardiac Therapy: Influence of Alginate Composition. Cell Transplantation, 2012, 21, 1969-1984.	2.5	43
51	Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. European Heart Journal, 2012, 33, 2360-2369.	2.2	130
52	Serotonin 5-HT2A receptor-mediated hypertrophy is negatively regulated by caveolin-3 in cardiomyoblasts and neonatal cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 502-510.	1.9	21
53	Role of Endothelial AADC in Cardiac Synthesis of Serotonin and Nitrates Accumulation. PLoS ONE, 2012, 7, e34893.	2.5	17
54	Pargyline reduces renal damage associated with ischaemia-reperfusion and cyclosporin. Nephrology Dialysis Transplantation, 2011, 26, 489-498.	0.7	24

#	Article	IF	CITATIONS
55	Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. European Heart Journal, 2011, 32, 1748-1757.	2.2	158
56	Evaluation of Alginate Microspheres for Mesenchymal Stem Cell Engraftment on Solid Organ. Cell Transplantation, 2010, 19, 1623-1633.	2.5	42
57	Characterization of Monoamine Oxidases in Mesenchymal Stem Cells: Role in Hydrogen Peroxide Generation and Serotonin-Dependent Apoptosis. Stem Cells and Development, 2010, 19, 1571-1578.	2.1	17
58	Activation of catalase by apelin prevents oxidative stressâ€linked cardiac hypertrophy. FEBS Letters, 2010, 584, 2363-2370.	2.8	125
59	Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochemical and Biophysical Research Communications, 2010, 391, 979-983.	2.1	39
60	Dose-dependent activation of distinct hypertrophic pathways by serotonin in cardiac cells. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H821-H828.	3.2	24
61	Mesenchymal Stem Cells Promote Matrix Metalloproteinase Secretion by Cardiac Fibroblasts and Reduce Cardiac Ventricular Fibrosis After Myocardial Infarction. Stem Cells, 2009, 27, 2734-2743.	3.2	233
62	Genetic deletion of MAO-A promotes serotonin-dependent ventricular hypertrophy by pressure overload. Journal of Molecular and Cellular Cardiology, 2009, 46, 587-595.	1.9	41
63	Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. Journal of Molecular and Cellular Cardiology, 2009, 46, 518-525.	1.9	76
64	Ex Vivo Pretreatment with Melatonin Improves Survival, Proangiogenic/Mitogenic Activity, and Efficiency of Mesenchymal Stem Cells Injected into Ischemic Kidney. Stem Cells, 2008, 26, 1749-1757.	3.2	170
65	Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives. Free Radical Biology and Medicine, 2008, 45, 1457-1467.	2.9	92
66	Vesicular monoamine transporter 1 mediates dopamine secretion in rat proximal tubular cells. American Journal of Physiology - Renal Physiology, 2007, 292, F1592-F1598.	2.7	16
67	Oxidative Stress–Dependent Sphingosine Kinase-1 Inhibition Mediates Monoamine Oxidase A–Associated Cardiac Cell Apoptosis. Circulation Research, 2007, 100, 41-49.	4.5	176
68	MAO-A-induced mitogenic signaling is mediated by reactive oxygen species, MMP-2, and the sphingolipid pathway. Free Radical Biology and Medicine, 2007, 43, 80-89.	2.9	47
69	New insights on receptor-dependent and monoamine oxidase-dependent effects of serotonin in the heart. Journal of Neural Transmission, 2007, 114, 823-827.	2.8	33
70	3-[5-(4,5-Dihydro-1H-imidazol-2-yl)-furan-2-yl]phenylamine (Amifuraline), a Promising Reversible and Selective Peripheral MAO-A Inhibitor. Journal of Medicinal Chemistry, 2006, 49, 5578-5586.	6.4	19
71	A new hypertrophic mechanism of serotonin in cardiac myocytes: receptorâ€independent ROS generation. FASEB Journal, 2005, 19, 1-15.	0.5	91
72	Glucose handling in streptozotocin-induced diabetic rats is improved by tyramine but not by the amine oxidase inhibitor semicarbazide. European Journal of Pharmacology, 2005, 522, 139-146.	3.5	27

#	Article	IF	CITATIONS
73	Oxidative Stress by Monoamine Oxidase Mediates Receptor-Independent Cardiomyocyte Apoptosis by Serotonin and Postischemic Myocardial Injury. Circulation, 2005, 112, 3297-3305.	1.6	230
74	Involvement of Peripheral Benzodiazepine Receptor in the Oxidative Stress, Death-Signaling Pathways, and Renal Injury Induced by Ischemia-Reperfusion. Journal of the American Society of Nephrology: JASN, 2004, 15, 2152-2160.	6.1	58
75	Dopamine D2-like receptor agonist bromocriptine protects against ischemia/reperfusion injury in rat kidney. Kidney International, 2004, 66, 633-640.	5.2	22
76	Differential substrate specificity of monoamine oxidase in the rat heart and renal cortex. Life Sciences, 2003, 73, 955-967.	4.3	4
77	Activation of Pro-Apoptotic Cascade by Dopamine in Renal Epithelial Cells is Fully Dependent on Hydrogen Peroxide Generation by Monoamine Oxidases. Journal of the American Society of Nephrology: JASN, 2003, 14, 855-862.	6.1	55
78	Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1460-H1467.	3.2	127
79	Prevention of apoptotic and necrotic cell death, caspaseâ€3 activation, and renal dysfunction by melatonin after ischemia/reperfusion. FASEB Journal, 2003, 17, 1-17.	0.5	70
80	Substrate-dependent regulation of MAO-A in rat mesangial cells: involvement of dopamine D2-like receptors. American Journal of Physiology - Renal Physiology, 2003, 284, F167-F174.	2.7	16
81	Dopamine D4 Receptor Expression in Rat Kidney: Evidence for Pre- and Postjunctional Localization. Journal of Histochemistry and Cytochemistry, 2002, 50, 1091-1096.	2.5	25
82	Regulation of JNK/ERK activation, cell apoptosis, and tissue regeneration by monoamine oxidases after renal ischemiaâ€reperfusion. FASEB Journal, 2002, 16, 1129-1131.	0.5	93
83	Hydrogen peroxide production by monoamine oxidase during ischemia/reperfusion. European Journal of Pharmacology, 2002, 448, 225-230.	3.5	50
84	Dopamine induces ERK activation in renal epithelial cells through H2O2 produced by monoamine oxidase. Kidney International, 2001, 59, 76-86.	5.2	56
85	Monoamine oxidase in developing rat renal cortex: effect of dexamethasone treatment. European Journal of Pharmacology, 2001, 415, 19-26.	3.5	5
86	Analysis of the Pharmacological and Molecular Heterogeneity of I ₂ -Imidazoline-Binding Proteins using Monoamine Oxidase-Deficient Mouse Models. Molecular Pharmacology, 2000, 58, 1085-1090.	2.3	43
87	Hydrogen peroxide generation by monoamine oxidases in rat white adipocytes: role on cAMP production. European Journal of Pharmacology, 2000, 395, 177-182.	3.5	19
88	Monoamine Oxidase B Induces ERK-Dependent Cell Mitogenesis by Hydrogen Peroxide Generation. Biochemical and Biophysical Research Communications, 2000, 271, 181-185.	2.1	37
89	Serotonin metabolism in rat mesangial cells: Involvement of a serotonin transporter and monoamine oxidase A. Kidney International, 1999, 56, 1391-1399.	5.2	19
90	Relationship between I2 Imidazoline Binding Sites and Monoamine Oxidase B in Livera. Annals of the New York Academy of Sciences, 1999, 881, 32-34.	3.8	6

#	Article	IF	Citations
91	Transfected Cells Expressing the Three Subtypes of Alpha2-Adrenergic Receptors Lack I1-Imidazoline Binding Sites. Annals of the New York Academy of Sciences, 1999, 881, 59-60.	3.8	2
92	Reactive oxygen species production by monoamine oxidases in intact cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 359, 428-431.	3.0	87
93	High expression of monoamine oxidases in human white adipose tissue: evidence for their involvement in noradrenaline clearance. Biochemical Pharmacology, 1999, 58, 1735-1742.	4.4	61
94	Characterization of monoamine oxidase isoforms in human islets of langerhans. Life Sciences, 1999, 65, 441-448.	4.3	11
95	Characterization of []idazoxan binding proteins in solubilized membranes from rabbit and human liver. Journal of the Autonomic Nervous System, 1998, 72, 111-117.	1.9	4
96	The renal monoamine oxidases. Current Opinion in Nephrology and Hypertension, 1998, 7, 33-36.	2.0	7
97	109 Molecular and kinetic characterization of monoamine oxidases in the rat heart. Biochemical Society Transactions, 1998, 26, S392-S392.	3.4	O
98	Relationship between $\hat{l}\pm 2$ -Adrenergic Receptors and Imidazoline/Guanidinium Receptive Sites. Advances in Pharmacology, 1997, 42, 474-477.	2.0	2
99	I2-imidazoline binding sites and monoamine oxidase activity in human postmortem brain from patients with Parkinson's disease. Neurochemistry International, 1997, 30, 31-36.	3.8	35
100	Predominant Expression of Monoamine Oxidase B Isoform in Rabbit Renal Proximal Tubule: Regulation By I2 Imidazoline Ligands in Intact Cells. Molecular Pharmacology, 1997, 51, 637-643.	2.3	23
101	Localization of the Imidazoline Binding Domain on Monoamine Oxidase B. Molecular Pharmacology, 1997, 52, 549-553.	2.3	61
102	RENAL MONOAMINE OXIDASES: POTENTIAL ROLE IN THE LONG TERM REGULATION OF BLOOD PRESSURE. Fundamental and Clinical Pharmacology, 1997, 11, 36s.	1.9	0
103	The elusive family of imidazoline binding sites. Trends in Pharmacological Sciences, 1996, 17, 13-16.	8.7	133
104	Clotrimazole and efaroxan inhibit red cell Gardos channel independently of imidazoline I1 and I2 binding sites. European Journal of Pharmacology, 1996, 295, 109-112.	3.5	12
105	Localization of I2-Imidazoline Binding Sites on Monoamine Oxidases. Journal of Biological Chemistry, 1995, 270, 9856-9861.	3.4	168
106	Imidazoline/Guanidinium Binding Domains on Monoamine Oxidases. Journal of Biological Chemistry, 1995, 270, 27961-27968.	3.4	58
107	Pharmacological and Molecular Characteristics. Annals of the New York Academy of Sciences, 1995, 763, 100-105.	3.8	9
108	[3H]Idazoxan Binds to Mitochondrial I2Imidazoline Binding Sites in Isolated Cells from Rabbit Kidney Proximal Tubule. Annals of the New York Academy of Sciences, 1995, 763, 172-173.	3.8	3

7

#	Article	IF	Citations
109	Inhibition of Red Cell Ca2+-Activated K+Transport by Clotrimazole Does Not Take Place via Imidazoline Binding Sites. Annals of the New York Academy of Sciences, 1995, 763, 287-289.	3.8	1
110	Evidence for a Role for Imidazoline I1Binding Site in Rat Brown Adipocytes. Annals of the New York Academy of Sciences, 1995, 763, 398-400.	3.8	6
111	Renal Imidazoline-Guanidinium Receptive Site. Journal of Cardiovascular Pharmacology, 1992, 20, S21-S23.	1.9	6
112	Characterization of Mitochondrial Imidazoline-Guanidinium Receptive Sites (IGRS) in Liver. American Journal of Hypertension, 1992, 5, 80S-82S.	2.0	4
113	Tissue-specific localization of mitochondrial imidazoline-guanidinium receptive sites. European Journal of Pharmacology, 1992, 219, 335-338.	3.5	31
114	Characterization of Imidazoline-Guanidinium Receptive Sites in Renal Medulla From Human Kidney. American Journal of Hypertension, 1992, 5, 69S-71S.	2.0	5
115	Identification of an imidazoline-guanidinium receptive site in mitochondria from rabbit cerebral cortex. European Journal of Pharmacology, 1991, 208, 81-83.	2.6	55
116	Imidazoline-guanidinium and $\hat{l}\pm 2$ -adrenergic binding sites in basolateral membranes from human kidney. European Journal of Pharmacology, 1991, 206, 23-31.	2.6	64
117	CONTRIBUTION OF ?2-ADRENOCEPTORS TO THE CENTRAL CARDIOVASCULAR EFFECTS OF CLONIDINE AND S 8350 IN ANAESTHETIZED RATS. Clinical and Experimental Pharmacology and Physiology, 1991, 18, 401-408.	1.9	12
118	Glycerol, sodium phosphate, and sodium chloride permit the solubilization and partial purification of rat hepatic $\hat{l}\pm 1$ -receptors by 3-(3-cholamidylpropyl)-dimethylammonio-1-propanesulfonate. Analytical Biochemistry, 1989, 176, 375-381.	2.4	4
119	αâ€ADRENOCEPTOR PROPERTIES IN RAT STRAINS SENSITIVE OR RESISTANT TO SALTâ€INDUCED HYPERTENSION Fundamental and Clinical Pharmacology, 1989, 3, 483-495.	. 1.9	8
120	Selective inhibition of adrenalineâ€induced human platelet aggregation by the structurally related Paf antagonist Ro 19–3704. British Journal of Pharmacology, 1989, 96, 759-766.	5.4	9
121	Noradrenaline Content and Adrenergic Receptors in Kidney and Heart of the Prehypertensive and Hypertensive Lyon Rat Strain. American Journal of Hypertension, 1988, 1, 140-145.	2.0	9
122	Selective modification of renal alpha 2-adrenergic receptors in Milan hypertensive rat strain Hypertension, 1987, 10, 505-511.	2.7	11
123	Evidence for imidazoline binding sites in basolateral membranes from rabbit kidney. Biochemical and Biophysical Research Communications, 1987, 147, 1055-1060.	2.1	118
124	Changes in central ?-adrenoceptors and noradrenaline content after high sodium intake in sabra salt-sensitive and salt-resistant rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1986, 333, 117-123.	3.0	2
125	Insulin degradation-in human erythrocytes. Effect of Triton X-100 treatment on insulin-degrading activity of membranes. Journal of Endocrinological Investigation, 1983, 6, 441-444.	3.3	3
126	Cardiovascular Response to Cigarette Smoking during Adrenergic Block in Essential Hypertension. Drugs, 1983, 25, 149.	10.9	5