Kensuke Kuroda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108488/publications.pdf

Version: 2024-02-01

		279487	395343
77	1,252	23	33
papers	citations	h-index	g-index
70	70	70	1220
78	78	78	1239
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Electrochemical behavior of tungsten carbide-cobalt alloy using molten hydroxide as electrolyte under low temperature. Journal of Material Cycles and Waste Management, 2020, 22, 348-353.	1.6	3
2	Surface Modification with Hydrophilization. , 2019, , 505-521.		0
3	Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45489-45497.	4.0	24
4	New insights into the interaction between heavy metals and struvite: Struvite as platform for heterogeneous nucleation of heavy metal hydroxide. Chemical Engineering Journal, 2019, 365, 60-69.	6.6	71
5	Thin-Film NASICON-Type Li _{1+<i>x</i>} Al <i>xx</i> Ti _{2â€"<i>x</i>} (PO ₄) ₃ Solid Electrolyte Directly Fabricated on a Graphite Substrate with a Hydrothermal Method Based on Different Al Sources. ACS Sustainable Chemistry and Engineering. 2019. 7. 10751-10762.	¹b> 3.2	19
6	Fabrication of the Silicate Containing CaTiO ₃ Film with Hydrophilic and Smooth Surface on Titanium to Improve Osteoconductivity. Materials Transactions, 2019, 60, 1807-1813.	0.4	6
7	Gallium doped NASICON type LiTi2(PO4)3 thin-film grown on graphite anode as solid electrolyte for all solid state lithium batteries. Journal of Alloys and Compounds, 2019, 775, 1147-1155.	2.8	36
8	Ultrathin LiFePO4/C cathode for high performance lithium-ion batteries: Synthesis via solvothermal transformation of iron hydroxyl phosphate Fe3(PO4)2(OH)2 nanosheet. Electrochimica Acta, 2018, 289, 324-332.	2.6	8
9	Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro. International Journal of Nanomedicine, 2018, Volume 13, 1665-1676.	3.3	24
10	In vivo osteoconductivity of surface modified Ti-29Nb-13Ta-4.6Zr alloy with low dissolution of toxic trace elements. PLoS ONE, 2018, 13, e0189967.	1.1	6
11	Effect of [Al(DMSO2)3] 3+ Concentration on Al Electrodeposition from AlCl3/Dimethylsulfone Baths. Journal of Electrochemical Science and Technology, 2018, 9, 69-77.	0.9	5
12	Surface Layered Structure Control of Implants and Their Bioactivity. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 329-334.	0.1	2
13	Direct fabrication of thin-film LiTi2(PO4)3 electrodes using the hydrothermal method. Solid State lonics, 2016, 296, 7-12.	1.3	1
14	Temperature-dependent corrosion behaviour of flame-resistant, Ca-containing AZX911 and AMX602 Mg alloys. Corrosion Science, 2016, 103, 181-188.	3.0	18
15	Electrochemical Leaching of Tungsten from Hard Metal Alloy Using Molten Sodium Hydroxide. Materials Transactions, 2015, 56, 733-737.	0.4	4
16	Leaching of Rare Earth Elements from Neodymium magnet using Electrochemical method. Transactions of the Materials Research Society of Japan, 2015, 40, 343-346.	0.2	5
17	New approach for controlling osteoconductivity of valve metals based on TiO ₂ coatings on Ti substrates. Materials Technology, 2015, 30, B13-B20.	1.5	9
18	A new application of cell-free bone regeneration: immobilizing stem cells from human exfoliated deciduous teeth-conditioned medium onto titanium implants using atmospheric pressure plasma treatment. Stem Cell Research and Therapy, 2015, 6, 124.	2.4	30

#	Article	IF	CITATIONS
19	Temperature dependence of initial passivity breakdown of AZ61 and AZ91D Mg alloys in 0.1 M NaCl solution. Metals and Materials International, 2015, 21, 857-864.	1.8	3
20	Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity. Materials Science and Engineering C, 2015, 49, 430-435.	3.8	40
21	Effect of Anodizing Time on the Surface Morphology and Corrosion Resistance of AZ31 Magnesium Alloy. Science of Advanced Materials, 2015, 7, 76-79.	0.1	4
22	Mechanism for the Formation of Black Cr-Co Electrodeposits from Cr ³⁺ Solution Containing Oxalic Acid. Journal of the Electrochemical Society, 2014, 161, D713-D718.	1.3	5
23	Enhancement of valve metal osteoconductivity by one-step hydrothermal treatment. Materials Science and Engineering C, 2014, 42, 405-411.	3.8	10
24	Development of Bioactivity and Pull-out Torque Control Technology on Ti Implant Surface and its Application for Cold Thread Rolled Bone Screw. Procedia Engineering, 2014, 81, 340-345.	1.2	3
25	Synergistic corrosion protection for AZ31 Mg alloy by anodizing and stannate post-sealing treatments. Electrochimica Acta, 2013, 97, 313-319.	2.6	32
26	Enhanced Corrosion Resistance of AZ31 Magnesium Alloy by Pulse Anodization. Journal of the Electrochemical Society, 2013, 160, C364-C368.	1.3	7
27	Preparation and Characterization of Hydroxyapatite Coating on AZ31 Mg Alloy for Implant Applications. Bioinorganic Chemistry and Applications, 2013, 2013, 1-6.	1.8	44
28	Pretreatment of Metallic Biomaterials. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2013, 64, 634-639.	0.1	1
29	Formation of Amorphous TiO2 Film on Ti Using Anodizing in Concentrated H3PO4 Aqueous Solution and Its Osteoconductivity. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 33-38.	0.2	0
30	Surface Hydrophilicity and Osteoconductivity of Anodized Ti in Aqueous Solutions with Various Solute lons. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 311-317.	0.2	0
31	Osteoconductivity of Superhydrophilic Anodized TiO ₂ Coatings on Ti Treated with Hydrothermal Processes. Journal of Biomaterials and Nanobiotechnology, 2013, 04, 45-52.	1.0	25
32	High Osteoconductive Surface of Pure Titanium by Hydrothermal Treatment. Journal of Biomaterials and Nanobiotechnology, 2013, 04, 284-290.	1.0	18
33	Osteoconductivity and Hydrophilicity of TiO _{2} Coatings on Ti Substrates Prepared by Different Oxidizing Processes. Bioinorganic Chemistry and Applications, 2012, 2012, 1-7.	1.8	31
34	Surface Hydrophilicity and Osteoconductivity of Anodized Ti in Aqueous Solutions with Various Solute lons. Materials Transactions, 2012, 53, 1956-1961.	0.4	24
35	Osteoconductivity of Anodized Titanium with Controlled Micron-Level Surface Roughness. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2012, 76, 283-288.	0.2	2
36	Formation of Amorphous TiO ₂ Film on Ti Using Anodizing in Concentrated H ₃ PO ₄ Aqueous Solution and Its Osteoconductivity. Materials Transactions, 2012, 53, 508-512.	0.4	22

3

#	Article	IF	CITATIONS
37	Improvement in Coating Quality and Corrosion Characteristics of Galvanized Steels by Pre-Electrodeposition of Cu. Journal of the Electrochemical Society, 2012, 159, C441-C446.	1.3	9
38	Improved surface morphology and corrosion resistance for galvannealed coatings by pre-electroplating iron. Corrosion Science, 2012, 58, 152-158.	3.0	18
39	Improvement in corrosion characteristics of AZ31 Mg alloy by square pulse anodizing between transpassive and active regions. Corrosion Science, 2012, 63, 5-11.	3.0	35
40	Hydroxyapatite Coating of Titanium Implants Using Hydroprocessing and Evaluation of Their Osteoconductivity. Bioinorganic Chemistry and Applications, 2012, 2012, 1-7.	1.8	136
41	Influence of surface properties on bioactivity and pull-out torque in cold thread rolled Ti rodâ€"Development of bioactive metal-forming technology. CIRP Annals - Manufacturing Technology, 2012, 61, 579-582.	1.7	8
42	Improvement of Osteoconductivity of Hydroxyapatite Coating on Ti Substrate using Hydro-Processing. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2011, 62, 630.	0.1	0
43	Osteoconductivity of Anodized Titanium with Controlled Micron-Level Surface Roughness. Materials Transactions, 2011, 52, 1650-1654.	0.4	29
44	Osteoconductive HAp and TiO2 Coatings on Titanium using Hydro-process. Materials Research Society Symposia Proceedings, 2009, 1236, 1.	0.1	0
45	Formation and in Vivo Evaluation of Carbonate Apatite and Carbonate Apatite/CaCO3 Composite Films Using the Thermal Substrate Method in Aqueous Solution. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2009, 73, 346-353.	0.2	4
46	Formation and Osteoconductivity of Hydroxyapatite/Collagen Composite Films Using a Thermal Substrate Method in Aqueous Solutions. Materials Transactions, 2009, 50, 1190-1195.	0.4	27
47	Osteoconductivity of Titania/Hydroxyapatite Composite Films Formed Using Pulse Electrolysis. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 383-387.	0.2	1
48	Formation and <i>in Vivo</i> Evaluation of Carbonate Apatite and Carbonate Apatite/CaCO ₃ Composite Films Using the Thermal Substrate Method in Aqueous Solution. Materials Transactions, 2008, 49, 1434-1440.	0.4	28
49	Formation of Titania/Hydroxyapatite Composite Films by Pulse Electrolysis. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 376-382.	0.2	2
50	Improvement of Osteoconductivity of Titanium using Surface Modification. Denki-seiko, 2008, 79, 229-237.	0.0	1
51	Formation of Titania/Hydroxyapatite Composite Films by Pulse Electrolysis. Materials Transactions, 2007, 48, 322-327.	0.4	9
52	Osteoinductivity of Hydroxyapatite Films with Different Surface Morphologies Coated by the Thermal Substrate Method in Aqueous Solutions. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 342-345.	0.2	8
53	Osteoinductivity of Titania/Hydroxyapatite Composite Films Formed Using Pulse Electrolysis. Materials Transactions, 2007, 48, 328-331.	0.4	11
54	Osteoinductivity of HAp Films with Different Surface Morphologies Coated by the Thermal Substrate Method in Aqueous Solutions. Materials Transactions, 2006, 47, 1391-1394.	0.4	37

#	Article	IF	CITATIONS
55	Preparation of Size and Aggregation Controlled Nickel Oxalate Dihydrate Particles from Nickel Hydroxide. Advanced Materials Research, 2006, 15-17, 581-586.	0.3	5
56	Hydroxyapatite Coatings on a 3D Porous Surface Using Thermal Substrate Method. Materials Transactions, 2005, 46, 1633-1635.	0.4	31
57	Formation of ZnTe compounds by using the electrochemical ion exchange reaction in molten chloride. Thin Solid Films, 2005, 478, 223-227.	0.8	4
58	Preparation of Calcium Phosphate Coatings on Titanium Using the Thermal Substrate Method and Their <1>in vitro 1 Evaluation. Materials Transactions, 2002, 43, 3015-3019.	0.4	31
59	Evaluation of the Hydroxyapatite Film Coating on Titanium Cathode by QCM. Materials Transactions, 2002, 43, 3010-3014.	0.4	26
60	Hydroxyapatite coating on titanium by thermal substrate method in aqueous solution. Journal of Biomedical Materials Research Part B, 2002, 59, 390-397.	3.0	69
61	Effects of ion concentration and pH on hydroxyapatite deposition from aqueous solution onto titanium by the thermal substrate method. Journal of Biomedical Materials Research Part B, 2002, 61, 354-359.	3.0	49
62	Hydroxyapatite coating on titanium by means of thermal substrate method in aqueous solutions. Solid State Ionics, 2002, 151, 47-52.	1.3	58
63	Calcium Phosphate Coating on Titanium Plates by Electrodeposition. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
64	Effect of Moisture in Molten Salts on Formation of La-Ni Alloy and its Potential Response. Electrochemistry, 2000, 68, 636-638.	0.6	1
65	Potential Response During the Formation of the La-Ni Alloy After Molten Salts Electrolysis. Electrochemistry, 2000, 68, 591-595.	0.6	5
66	Formation of Mg-Ni Hydrogen Absorption Alloy Film by Molten Salts Electrolysis. Electrochemistry, 1999, 67, 655-660.	0.6	6
67	Electrochemical and thermodynamic properties of titanium chloride solutions in various alkali chloride mixtures. Electrochimica Acta, 1998, 44, 421-431.	2.6	45
68	Formation of the Hydrogen Absorption Films by Molten Salts Electrolysis and Their Evaluation. Electrochemistry, 1998, 66, 549-555.	0.3	3
69	Influence of Precipitation of Graphite and Precipitated Cementite on Solid State Electrotransport of Carbon in γ-Iron. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1996, 60, 446-451.	0.2	1
70	New Method for the Measurement of Effective Valence in Solid State Electrotransport and Its Application to the Fe–C and Fe–N Systems. Materials Transactions, JIM, 1995, 36, 1149-1156.	0.9	3
71	Electrotransport of Carbon and Nitrogen in & Samp; gamma; -lron. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1995, 59, 1247-1252.	0.2	1
72	New Method for the Measurement of Effective Valence in Solid State Electrotransport and the Application to the Fe-C and Fe-N Systems. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1994, 58, 634-641.	0.2	2

KENSUKE KURODA

#	Article	IF	CITATIONS
73	Anodic Oxide Coatings on Ti Alloys and their Osteoconductivity. Materials Science Forum, 0, 706-709, 612-616.	0.3	3
74	Osteoconductive TiO ₂ Coating on Titanium Using Anodizing in High Content Phosphoric Acid. Materials Science Forum, 0, 706-709, 538-542.	0.3	0
75	Osteoconductivity of Superhydrophilic Anodized TiO ₂ Films Using Hydrothermal Treatment. Materials Science Forum, 0, 783-786, 1332-1336.	0.3	O
76	Osteoconductivity of Hydrothermal-Treated Valve Metals. Materials Science Forum, 0, 783-786, 1298-1302.	0.3	1
77	Effects of Titanium Surface Wettability on Osteoblast Behavior <i>In Vitro</i> . Materials Science Forum, 0, 985, 64-68.	0.3	3