Ling-Mei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108122/publications.pdf

Version: 2024-02-01

106	1,724	23	39
papers	citations	h-index	g-index
108	108	108	1484
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Snow depth and snow cover over the Tibetan Plateau observed from space in against ERA5: matters of scale. Climate Dynamics, 2023, 60, 1523-1541.	3.8	10
2	The Potential of ALOS-2 and Sentinel-1 Radar Data for Soil Moisture Retrieval With High Spatial Resolution Over Agroforestry Areas, China. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	9
3	Assessment of 24 soil moisture datasets using a new in situ network in the Shandian River Basin of China. Remote Sensing of Environment, 2022, 271, 112891.	11.0	47
4	Daily snow water equivalent product with SMMR, SSM/I and SSMIS from 1980 to 2020 over China. Big Earth Data, 2022, 6, 420-434.	4.4	12
5	Characterization of NDSI Variation: Implications for Snow Cover Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-18.	6.3	3
6	Land Surface Freeze/Thaw Detection Over the Qinghai–Tibet Plateau Using FY-3/MWRI Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	0
7	Daily High-Resolution Land Surface Freeze/Thaw Detection Using Sentinel-1 and AMSR2 Data. Remote Sensing, 2022, 14, 2854.	4.0	O
8	Comparison of Machine Learning-Based Snow Depth Estimates and Development of a New Operational Retrieval Algorithm over China. Remote Sensing, 2022, 14, 2800.	4.0	3
9	Retrieval of Fractional Snow Cover over High Mountain Asia Using 1 km and 5 km AVHRR/2 with Simulated Mid-Infrared Reflective Band. Remote Sensing, 2022, 14, 3303.	4.0	2
10	A Universal Ratio Snow Index for Fractional Snow Cover Estimation. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 721-725.	3.1	12
11	A fine-resolution soil moisture dataset for China in 2002–2018. Earth System Science Data, 2021, 13, 3239-3261.	9.9	48
12	Estimation and Validation the Fractional Snow Cover from Sentinel-2 MSI Over the Tibet Plateau. , 2021, , .		0
13	Estimating Cloud-Free Fractional Snow Cover from Himawari-8, FY-4A and Modis Observation., 2021,,.		1
14	Soil Moisture Temporal Stability Analysis in Genhe Watershed Observation Network., 2021,,.		0
15	In situ soil moisture and temperature network in genhe watershed and saihanba area in China. Data in Brief, 2020, 31, 105693.	1.0	8
16	Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach. Cryosphere, 2020, 14, 1763-1778.	3.9	30
17	Evaluation and analysis of SMAP, AMSR2 and MEaSUREs freeze/thaw products in China. Remote Sensing of Environment, 2020, 242, 111734.	11.0	29
18	Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sensing of Environment, 2020, 240, 111680.	11.0	120

#	Article	IF	Citations
19	Assessing the Performances of FY-3D/MWRI and DMSP SSMIS in GlobSnow-2 Assimilation System for SWE Estimation. , 2020, , .		1
20	The Validation of Snow Cover Product Over High Mountain Asia. , 2020, , .		0
21	Evaluation of Soil Moisture Retrievals from ALOS-2, Sentinel-1 Data in Genhe, China., 2020, , .		O
22	Development of Microwave Emission Model for Frozen Soil with Considering the Volume Scattering Effect. , 2020, , .		0
23	Remote Sensing of Environmental Changes in Cold Regions: Methods, Achievements and Challenges. Remote Sensing, 2019, 11, 1952.	4.0	34
24	Development of a Parameterized Model to Estimate Microwave Radiation Response Depth of Frozen Soil. Remote Sensing, 2019, 11, 2028.	4.0	3
25	The Consistency of SSM/I vs. SSMIS and the Influence on Snow Cover Detection and Snow Depth Estimation over China. Remote Sensing, 2019, 11, 1879.	4.0	9
26	Editorial for Special Issue: "Remote Sensing of Environmental Changes in Cold Regions― Remote Sensing, 2019, 11, 2165.	4.0	0
27	Development of a Snow Depth Estimation Algorithm over China for the FY-3D/MWRI. Remote Sensing, 2019, 11, 977.	4.0	24
28	Downscaling Of SMAP Soil Moisture Products over GENHE Area in China. , 2019, , .		1
29	Estimation of Fractional Snow Cover From Fy-4a/Agri. , 2019, , .		1
30	Snow-Covered Area Retrieval from Himawari–8 AHI Imagery of the Tibetan Plateau. Remote Sensing, 2019, 11, 2391.	4.0	9
31	SMAP, RS-DTVGM, and in-situ monitoring: Which performs best in presenting the soil moisture in the middle-high latitude frozen area in the Sanjiang Plain, China?. Journal of Hydrology, 2019, 571, 300-310.	5.4	11
32	Assessment of MODIS-Based Fractional Snow Cover Products Over the Tibetan Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 533-548.	4.9	27
33	Improvement of Snow Depth Estimation Using SSM/I Brightness Temperature in China., 2018,,.		5
34	Cloud-Free Fractional Snow Cover Estimation from Blended MODIS and FY-2 VISSR Measurements. , 2018, , .		0
35	Using a Linear Unmixing Method to Improve Passive Microwave Snow Depth Retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4414-4429.	4.9	7
36	Verification of Downscaling Method for Near-Surface Freeze/Thaw State Monitoring in Genhe Area of China. , 2018, , .		1

#	Article	IF	CITATIONS
37	Assessment of Methods for Passive Microwave Snow Cover Mapping Using FY-3C/MWRI Data in China. Remote Sensing, 2018, 10, 524.	4.0	14
38	Extending RAPID model to simulate forest microwave backscattering. Remote Sensing of Environment, 2018, 217, 272-291.	11.0	10
39	Detection of land surface freeze-thaw status on the Tibetan Plateau using passive microwave and thermal infrared remote sensing data. Remote Sensing of Environment, 2017, 199, 291-301.	11.0	22
40	Evaluation and analysis of AMSRâ€2, SMOS, and SMAP soil moisture products in the Genhe area of China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8650-8666.	3.3	62
41	Estimating Time Series Soil Moisture by Applying Recurrent Nonlinear Autoregressive Neural Networks to Passive Microwave Data over the Heihe River Basin, China. Remote Sensing, 2017, 9, 574.	4.0	14
42	Fractional Snow Cover Mapping from FY-2 VISSR Imagery of China. Remote Sensing, 2017, 9, 983.	4.0	14
43	Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss. Remote Sensing, 2016, 8, 505.	4.0	37
44	Spatially and Temporally Complete Satellite Soil Moisture Data Based on a Data Assimilation Method. Remote Sensing, 2016, 8, 49.	4.0	22
45	Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method. Remote Sensing, 2016, 8, 105.	4.0	70
46	Improvement of long-term snow depth product accuracy from passive microwave satellite observations: A case study with SNODAS data. , 2016, , .		0
47	Downscaling microwave brightness temperatures from FY3B/MWRI with a linear unmixing method. , 2016, , .		0
48	Using a linear unmixing method to improve passive microwave snow depth retrieval. , 2016, , .		1
49	The water cycle observation mission (WCOM): Overview. , 2016, , .		20
50	Assessment of QP model based two channel algorithm with JAXA, LPRM soil moisture products over Genhe area in China. , 2016, , .		4
51	Review of snow water equivalent microwave remote sensing. Science China Earth Sciences, 2016, 59, 731-745.	5.2	45
52	Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations. Remote Sensing, 2015, 7, 5734-5757.	4.0	16
53	Calibration of the L-MEB Model for Croplands in HiWATER Using PLMR Observation. Remote Sensing, 2015, 7, 10878-10897.	4.0	5
54	The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE). PLoS ONE, 2015, 10, e0137545.	2.5	19

#	Article	IF	Citations
55	Estimating Mixed-Pixel Component Soil Moisture Contents Using Biangular Observations From the HiWATER Airborne Passive Microwave Data. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1146-1150.	3.1	6
56	Evaluation of snow products over the Tibetan Plateau. Hydrological Processes, 2015, 29, 3247-3260.	2.6	84
57	Modeling of the Permittivity of Holly Leaves in Frozen Environments. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 6048-6057.	6.3	13
58	Comparison of the classification accuracy of three soil freeze–thaw discrimination algorithms in China using SSMIS and AMSR-E passive microwave imagery. International Journal of Remote Sensing, 2014, 35, 7631-7649.	2.9	26
59	Snow cover mapping over China using FY-2 and MTSAT-2 data. Proceedings of SPIE, 2014, , .	0.8	1
60	Comparison of SSMIS, AMSR-E and MWRI brightness temperature data. , 2014, , .		1
61	WCOM: The science scenario and objectives of a global water cycle observation mission. , 2014, , .		17
62	Validation of ice mapping system snow cover over southern China based on Landsat Enhanced Thematic Mapper Plus imagery. Journal of Applied Remote Sensing, 2014, 8, 084680.	1.3	5
63	Improvement of snow depth retrieval for FY3B-MWRI in China. Science China Earth Sciences, 2014, 57, 1278-1292.	5.2	69
64	Monitoring snow cover using Chinese meteorological satellite data over China. Remote Sensing of Environment, 2014, 143, 192-203.	11.0	26
65	Measurement and Simulation of Topographic Effects on Passive Microwave Remote Sensing Over Mountain Areas: A Case Study From the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 1489-1501.	6.3	24
66	Comparison of the multi-layer HUT snow emission model with observations of wet snowpacks. Hydrological Processes, 2014, 28, 1071-1083.	2.6	6
67	Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau. Science China Earth Sciences, 2013, 56, 2173-2185.	5.2	34
68	A new method to determine the freeze-thaw erosion. , 2013, , .		3
69	Refinement of Microwave Vegetation Index Using Fourier Analysis for Monitoring Vegetation Dynamics. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1205-1208.	3.1	7
70	A new dielectric model for vegetation in frozen environment—Part I: Modeling section., 2013,,.		0
71	The influence of organic matter on soil dielectric constant at microwave frequencies (0.5–40 GHZ)., 2013,,.		10
72	Applying microwave radiation response depth to validate soil moisture retrieved from AMSR-E data. , 2013, , .		1

#	Article	IF	CITATIONS
73	Estimate of soil moisture using refined microwave vegetation index based on AMSR-E., 2013,,.		О
74	Retrieval of single scattering albedo of winter wheat in North China Plain based on AMSR-E data. , 2012, , .		0
75	Microwave emission of soil freezing and thawing observed by a truck-mounted microwave radiometer. International Journal of Remote Sensing, 2012, 33, 860-871.	2.9	9
76	Monitoring snow cover over China with FY-2E VISSR and FY-3B MWRI. , 2012, , .		3
77	A soil moisture retrieval model using a parameterized first-order model. , 2012, , .		0
78	Analyzing topography effects for L-band radiometry using an improved model approach. , 2012, , .		0
79	A statistic model developed to estimate the penetration depth using passive microwave remote sensing. , $2012, $, .		6
80	Evaluation of emission from snow-covered ground for passive microwave remote sensing. International Journal of Remote Sensing, 2012, 33, 872-886.	2.9	3
81	A dual-phase satellite data simulation system: Framework and preliminary evaluation over China. , 2012, , .		0
82	Effects of spatial distribution of soil parameters on soil moisture retrieval from passive microwave remote sensing. Science China Earth Sciences, 2012, 55, 1313-1322.	5.2	9
83	Progresses on microwave remote sensing of land surface parameters. Science China Earth Sciences, 2012, 55, 1052-1078.	5.2	67
84	Comparison of microwave emission model for frozen soil and field observation. , 2011, , .		2
85	Estimation of Snow Water Equivalence Using the Polarimetric Scanning Radiometer From the Cold Land Processes Experiments (CLPX03). IEEE Geoscience and Remote Sensing Letters, 2011, 8, 359-363.	3.1	21
86	The development of an algorithm to enhance and match the resolution of satellite measurements from AMSR-E. Science China Earth Sciences, 2011, 54, 410-419.	5.2	15
87	A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery. Hydrological Processes, 2011, 25, 1704-1716.	2.6	113
88	Simulation of emission properties and snow-soil system status of a melting thin snow pack. , 2011, , .		1
89	Estimate of Phase Transition Water Content in Freeze–Thaw Process Using Microwave Radiometer. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 4248-4255.	6.3	76
90	Sensitivity analysis of snow parameters inversion procedure to the passive microwave mixed-pixel patterns. , $2010, , .$		0

#	Article	IF	Citations
91	Impact of terrain topography on retrieval of snow water equivalence using passive microwave remote sensing. , $2010, \ldots$		6
92	Simulation and measurement of relief effects on passive microwave radiation. , 2010, , .		1
93	The atmosphere influence to AMSR-E measurements over snow-covered areas: Simulation and experiments. , 2009, , .		7
94	A parameterized multiple-scattering model for microwave emission from dry snow. Remote Sensing of Environment, 2007, 111, 357-366.	11.0	49
95	A parameterized multifrequency-polarization surface emission model. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 2831-2841.	6.3	138
96	Thermal bidirectional gap probability model for row crop canopies and validation. Science in China Series D: Earth Sciences, 2003, 46, 1241-1249.	0.9	18
97	A modified Douglas-Pecuker simplification algorithm. , 0, , .		0
98	Modeling and structural parameters inversion of crop for multiangular remote sensing observations. , 0, , .		0
99	Local statistic-based fusion of MIVIS VNIR and simulated TIR images. , 0, , .		0
100	Improving AMBRALS using new GO kernel., 0,,.		0
101	Modeling the albedo of mixed vegetation canopy and snow. , 0, , .		0
102	Evaluate subsurface effects on AMSR-E's snow depth retrieval. , 0, , .		0
103	A comparison of dry snow emission model with field observations. , 0, , .		3
104	A parameterized microwace emission model for dry snow cover. , 0, , .		0
105	A parameterized surface emission model and its estimation of soil moisture with radiometer measurements. , 0, , .		0
106	Monitoring daily snow cover for disaster mitigation purposes. SPIE Newsroom, 0, , .	0.1	1