Dagmar Galter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/710801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered Expression of Growth Associated Proteinâ€43 and Rho Kinase in Human Patients with Parkinson's Disease. Brain Pathology, 2017, 27, 13-25.	2.1	35
2	Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor. Neuropharmacology, 2017, 118, 13-25.	2.0	7
3	Myeloperoxidase-immunoreactive cells are significantly increased in brain areas affected by neurodegeneration in Parkinson's and Alzheimer's disease. Cell and Tissue Research, 2017, 369, 445-454.	1.5	79
4	Genetic Variations and mRNA Expression of NRF2 in Parkinson's Disease. Parkinson's Disease, 2017, 2017, 1-7.	0.6	12
5	Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Scientific Reports, 2017, 7, 16890.	1.6	47
6	Strong association between glucocerebrosidase mutations and Parkinson's disease in Sweden. Neurobiology of Aging, 2016, 45, 212.e5-212.e11.	1.5	50
7	ADAR2 affects mRNA coding sequence edits with only modest effects on gene expression or splicing <i>in vivo </i> . RNA Biology, 2016, 13, 15-24.	1.5	6
8	No Dopamine Cell Loss or Changes in Cytoskeleton Function in Transgenic Mice Expressing Physiological Levels of Wild Type or G2019S Mutant LRRK2 and in Human Fibroblasts. PLoS ONE, 2015, 10, e0118947.	1.1	24
9	An organic electronic biomimetic neuron enables auto-regulated neuromodulation. Biosensors and Bioelectronics, 2015, 71, 359-364.	5.3	44
10	Chronic L―DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice. Genes, Brain and Behavior, 2015, 14, 260-270.	1.1	19
11	Behavioral Deficits and Striatal DA Signaling in LRRK2 p.G2019S Transgenic Rats: A Multimodal Investigation Including PET Neuroimaging. Journal of Parkinson's Disease, 2014, 4, 483-498.	1.5	32
12	Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration. Neurobiology of Disease, 2014, 71, 345-358.	2.1	59
13	Comparison of Three Hypothermic Target Temperatures for the Treatment of Hypoxic Ischemia: mRNA Level Responses of Eight Genes in the Piglet Brain. Translational Stroke Research, 2013, 4, 248-257.	2.3	6
14	mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nature Neuroscience, 2013, 16, 499-506.	7.1	130
15	Enhanced dendritogenesis and axogenesis in hippocampal neuroblasts of LRRK2 knockout mice. Brain Research, 2013, 1497, 85-100.	1.1	30
16	Modulation of the endoplasmic reticulum–mitochondria interface in Alzheimer's disease and related models. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7916-7921.	3.3	381
17	Neurodegenerative phenotypes in an A53T Â-synuclein transgenic mouse model are independent of LRRK2. Human Molecular Genetics, 2012, 21, 2420-2431.	1.4	84
18	Association of a protective paraoxonase 1 (PON1) polymorphism in Parkinson's disease. Neuroscience Letters, 2012, 522, 30-35.	1.0	27

DAGMAR GALTER

#	Article	IF	CITATIONS
19	Adh1 and Adh1/4 knockout mice as possible rodent models for presymptomatic Parkinson's disease. Behavioural Brain Research, 2012, 227, 252-257.	1.2	13
20	MACI1 Copy Number Variation in Bipolar Affective Disorder and Schizophrenia. Biological Psychiatry, 2012, 71, 922-930.	0.7	41
21	PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nature Medicine, 2012, 18, 100-110.	15.2	185
22	Genetic Screening of the Mitochondrial Rho GTPases MIRO1 and MIRO2 in Parkinson's Disease. The Open Neurology Journal, 2012, 6, 1-5.	0.4	10
23	Modeling Parkinson's disease genetics: Altered function of the dopamine system in Adh4 knockout mice. Behavioural Brain Research, 2011, 217, 439-445.	1.2	12
24	Genetic studies of the protein kinase AKT1 in Parkinson's disease. Neuroscience Letters, 2011, 501, 41-44.	1.0	9
25	Dopaminergic Neuronal Loss, Reduced Neurite Complexity and Autophagic Abnormalities in Transgenic Mice Expressing G2019S Mutant LRRK2. PLoS ONE, 2011, 6, e18568.	1.1	338
26	Altered enzymatic activity and allele frequency of OMI/HTRA2 in Alzheimer's disease. FASEB Journal, 2011, 25, 1345-1352.	0.2	25
27	Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson's disease. FASEB Journal, 2011, 25, 1333-1344.	0.2	112
28	Chronic A2A antagonist treatment alleviates parkinsonian locomotor deficiency in MitoPark mice. Neurobiology of Disease, 2010, 40, 460-466.	2.1	25
29	MitoPark mice mirror the slow progression of key symptoms and Lâ€ĐOPA response in Parkinson's disease. Genes, Brain and Behavior, 2010, 9, 173-181.	1.1	92
30	Possible Involvement of a Mitochondrial Translation Initiation Factor 3 Variant Causing Decreased mRNA Levels in Parkinson's Disease. Parkinson's Disease, 2010, 2010, 1-5.	0.6	14
31	VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 389-394.	3.3	123
32	Variations of the CAG trinucleotide repeat in DNA polymerase gamma (POLG1) is associated with Parkinson's disease in Sweden. Neuroscience Letters, 2010, 485, 117-120.	1.0	32
33	Association of a polymorphism in the ABCB1 gene with Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, 422-424.	1.1	38
34	Post-transcriptional regulation of mRNA associated with DJ-1 in sporadic Parkinson disease. Neuroscience Letters, 2009, 452, 8-11.	1.0	73
35	The MitoPark Mouse – An animal model of Parkinson's disease with impaired respiratory chain function in dopamine neurons. Parkinsonism and Related Disorders, 2009, 15, S185-S188.	1.1	101
36	Expression of multi-drug resistance 1 mRNA in human and rodent tissues: reduced levels in Parkinson patients. Cell and Tissue Research, 2008, 334, 179-185.	1.5	41

DAGMAR GALTER

#	Article	IF	CITATIONS
37	Parkinson's Disease: recent progress. FEBS Journal, 2008, 275, 1369-1369.	2.2	1
38	Parkinson's disease: genetic versus toxinâ€induced rodent models. FEBS Journal, 2008, 275, 1384-1391.	2.2	126
39	Lrrk2 and α-synuclein are co-regulated in rodent striatum. Molecular and Cellular Neurosciences, 2008, 39, 586-591.	1.0	36
40	Developmental regulation of leucine-rich repeat kinase 1 and 2 expression in the brain and other rodent and human organs: Implications for Parkinson's disease. Neuroscience, 2008, 152, 429-436.	1.1	96
41	Age-associated mosaic respiratory chain deficiency causes trans-neuronal degeneration. Human Molecular Genetics, 2008, 17, 1418-1426.	1.4	41
42	Cerebellar αsynuclein levels are decreased in Parkinson's disease and do not correlate with <i>SNCA</i> polymorphisms associated with disease in a Swedish material. FASEB Journal, 2008, 22, 3509-3514.	0.2	41
43	S18Y, UCH-L1 and Parkinson's Disease. European Neurological Review, 2008, 3, 41.	0.5	1
44	Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proceedings of the United States of America, 2007, 104, 1325-1330.	3.3	516
45	S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism and Related Disorders, 2007, 13, 295-298.	1.1	46
46	DJ-1 and UCH-L1 gene activity patterns in the brains of controls, Parkinson and schizophrenia patients and in rodents. Physiology and Behavior, 2007, 92, 46-53.	1.0	21
47	Association study of two genetic variants in mitochondrial transcription factor A (TFAM) in Alzheimer's and Parkinson's disease. Neuroscience Letters, 2007, 420, 257-262.	1.0	41
48	High and complementary expression patterns of alcohol and aldehyde dehydrogenases in the gastrointestinal tract. FEBS Journal, 2007, 274, 1212-1223.	2.2	30
49	Expression of PINK1 mRNA in human and rodent brain and in Parkinson's disease. Brain Research, 2007, 1184, 10-16.	1.1	50
50	PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell, 2006, 9, 239.	7.7	2
51	Leucine-rich repeat kinase 2 (LRRK2) mutations in a Swedish Parkinson cohort and a healthy nonagenarian. Movement Disorders, 2006, 21, 1731-1734.	2.2	47
52	LRRK2 expression linked to dopamine-innervated areas. Annals of Neurology, 2006, 59, 714-719.	2.8	166
53	Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh1 mRNAs in rodent embryos. Cell and Tissue Research, 2005, 322, 227-236.	1.5	38
54	A Rare Truncating Mutation in ADH1C (G78Stop) Shows Significant Association With Parkinson Disease in a Large International Sample. Archives of Neurology, 2005, 62, 74.	4.9	57

DAGMAR GALTER

#	Article	IF	CITATIONS
55	Vascular Endothelial Growth Factor-A Promotes Peritumoral Lymphangiogenesis and Lymphatic Metastasis. Cancer Research, 2005, 65, 9261-9268.	0.4	170
56	PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell, 2004, 6, 333-345.	7.7	480
57	NURR1promoter polymorphisms: Parkinson's disease, schizophrenia, and personality traits. , 2003, 120B, 51-57.		36
58	Distribution of class I, III and IV alcohol dehydrogenase mRNAs in the adult rat, mouse and human brain. FEBS Journal, 2003, 270, 1316-1326.	0.2	78
59	ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson's disease and in the ventral tegmental area in schizophrenia. Neurobiology of Disease, 2003, 14, 637-647.	2.1	148
60	Nestin-like immunoreactivity of corpora amylacea in aged human brain. Molecular Brain Research, 2001, 94, 204-208.	2.5	20
61	Brain-derived neurotrophic factor and trkB are essential for cAMP-mediated induction of the serotonergic neuronal phenotype. Journal of Neuroscience Research, 2000, 61, 295-301.	1.3	65
62	Growth/Differentiation Factor-15/Macrophage Inhibitory Cytokine-1 Is a Novel Trophic Factor for Midbrain Dopaminergic Neurons <i>In Vivo</i> . Journal of Neuroscience, 2000, 20, 8597-8603.	1.7	145
63	Sequential Activation of the 5-HT1A Serotonin Receptor and TrkB Induces the Serotonergic Neuronal Phenotype. Molecular and Cellular Neurosciences, 2000, 15, 446-455.	1.0	80
64	Brainâ€derived neurotrophic factor and trkB are essential for cAMPâ€mediated induction of the serotonergic neuronal phenotype. Journal of Neuroscience Research, 2000, 61, 295-301.	1.3	1
65	Differential regulation of distinct phenotypic features of serotonergic neurons by bone morphogenetic proteins. European Journal of Neuroscience, 1999, 11, 2444-2452.	1.2	39
66	Developmental regulation of the serotonergic transmitter phenotype in rostral and caudal raphe neurons by transforming growth factor-βs. Journal of Neuroscience Research, 1999, 56, 531-538.	1.3	21
67	Regulation of the transmitter phenotype of rostral and caudal groups of cultured serotonergic raphe neurons. Neuroscience, 1999, 88, 549-559.	1.1	34
68	Role of cysteine and glutathione in signal transduction, immunopathology and cachexia. BioFactors, 1998, 8, 97-102.	2.6	48
69	GDNF-related factor persephin is widely distributed throughout the nervous system. , 1998, 53, 494-501.		29
70	Role of Cysteine and Glutathione in HIV Infection and Cancer Cachexia: Therapeutic Intervention with N-Acetylcysteine. Advances in Pharmacology, 1996, 38, 581-600.	1.2	43
71	[23] Thiols and the immune system: Effect of N-acetylcysteine on T cell system in human subjects. Methods in Enzymology, 1995, 251, 255-270.	0.4	11
72	Modulation of transcription factor NFχB activity by intracellular glutathione levels and by variations of the extracellular cysteine supply. FASEB Journal, 1995, 9, 246-252.	0.2	151

#	Article	IF	CITATIONS
73	Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB Journal, 1994, 8, 1131-1138.	0.2	419
74	Distinct effects of glutathione disulphide on the nuclear transcription factors kappaB and the activator protein-1. FEBS Journal, 1994, 221, 639-648.	0.2	253
75	Procaine has opposite effects on passive Na and K permeabilities in frog skin. Pflugers Archiv European Journal of Physiology, 1987, 408, 215-219.	1.3	5