
Thomas Ditlev Brunoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7108003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platform-based product development in the process industry: a systematic literature review. International Journal of Production Research, 2023, 61, 1696-1719.	7.5	10
2	A Bibliometric and Sentiment Analysis of CARV and MCPC Conferences in the 21st Century: Towards Sustainable Customization. Lecture Notes in Mechanical Engineering, 2022, , 3-24.	0.4	0
3	Exploring a Data-Augmented Approach for Improved Module Driver Analysis. Lecture Notes in Mechanical Engineering, 2022, , 677-685.	0.4	0
4	Product Architecture Mining: Identifying Current Architectural Solutions. Lecture Notes in Mechanical Engineering, 2022, , 694-701.	0.4	0
5	Analysis of Industry 4.0 Capabilities: A Perspective of Educational Institutions and Needs of Industry. Lecture Notes in Mechanical Engineering, 2022, , 887-894.	0.4	6
6	Methods and Models to Evaluate the Investment of Reconfigurable Manufacturing Systems: Literature Review and Research Directions. Lecture Notes in Mechanical Engineering, 2022, , 138-146.	0.4	0
7	Implementing Virtual Prototyping for the Production of Customized Products: An SME Study. Lecture Notes in Mechanical Engineering, 2022, , 762-769.	0.4	0
8	Impact of Dough Property Characterization on Industrial Bread Production. Lecture Notes in Mechanical Engineering, 2022, , 628-635.	0.4	0
9	Applying Modular Function Deployment for Non-assembled Products in the Process Industry. Lecture Notes in Mechanical Engineering, 2022, , 661-668.	0.4	1
10	Brownfield Design of Reconfigurable Manufacturing Architectures: An Application of a Modified MFD to the Capital Goods Industry. Procedia CIRP, 2022, 107, 1293-1298.	1.9	0
11	Module Drivers in Product Development: A Comprehensive Review and Synthesis. Procedia CIRP, 2022, 107, 1503-1508.	1.9	1
12	An Industry-Applicable Screening Tool for the Clarification of Changeability Requirements. IFIP Advances in Information and Communication Technology, 2021, , 471-478.	0.7	1
13	A Systematic Approach to Development of Changeable and Reconfigurable Manufacturing Systems. IFIP Advances in Information and Communication Technology, 2021, , 462-470.	0.7	2
14	Impact of Different Financial Evaluation Parameters for Reconfigurable Manufacturing System Investments. IFIP Advances in Information and Communication Technology, 2021, , 479-487.	0.7	0
15	Changeable Manufacturing: A Comparative Study of Requirements and Potentials in Two Industrial Cases. IFIP Advances in Information and Communication Technology, 2021, , 452-461.	0.7	0
16	Towards a model for evaluating the investment of reconfigurable and platform-based manufacturing concepts considering footprint adaptability. Procedia CIRP, 2021, 104, 553-558.	1.9	2
17	A Tool for the Comparison of Concept Designs of Reconfigurable Manufacturing Systems. Procedia CIRP, 2021, 104, 1125-1130.	1.9	1
18	Integrated product-process modelling for platform-based co-development. International Journal of Production Research, 2020, 58, 6185-6201.	7.5	20

THOMAS DITLEV BRUNOE

#	Article	IF	CITATIONS
19	Classification coding of production systems for identification of platform candidates. CIRP Journal of Manufacturing Science and Technology, 2020, 28, 144-156.	4.5	5
20	Securing IT/OT Links for Low Power IIoT Devices: Design Considerations for Industry 4.0. IEEE Access, 2020, 8, 200305-200321.	4.2	23
21	Towards an Industry-Applicable Design Methodology for Developing Reconfigurable Manufacturing. IFIP Advances in Information and Communication Technology, 2020, , 449-456.	0.7	8
22	Product and Process Variety Management: Case study in the Food Industry. Procedia CIRP, 2019, 81, 1065-1070.	1.9	8
23	Changeable Manufacturing Systems Supporting Circular Supply Chains. Procedia CIRP, 2019, 81, 1423-1428.	1.9	12
24	Identification of Platform Candidates Through Production System Classification Coding. IFIP Advances in Information and Communication Technology, 2019, , 400-407.	0.7	0
25	A DSM Clustering Method for Product and Service Modularization. IFIP Advances in Information and Communication Technology, 2019, , 375-382.	0.7	1
26	Critical enablers of changeable and reconfigurable manufacturing and their industrial implementation. Journal of Manufacturing Technology Management, 2018, 29, 983-1002.	6.4	24
27	Evaluating the investment feasibility and industrial implementation of changeable and reconfigurable manufacturing concepts. Journal of Manufacturing Technology Management, 2018, 29, 449-477.	6.4	10
28	A participatory systems design methodology for changeable manufacturing systems. International Journal of Production Research, 2018, 56, 2769-2787.	7.5	27
29	A classification scheme for production system processes. Procedia CIRP, 2018, 72, 609-614.	1.9	9
30	Exploring Requirements and Implementation of Changeability and Reconfigurability in Danish Manufacturing. Procedia CIRP, 2018, 72, 665-670.	1.9	4
31	Framework for Integrating Production System Models and Product Family Models. Procedia CIRP, 2018, 72, 592-597.	1.9	8
32	A Conceptual Framework for Stage Configuration. IFIP Advances in Information and Communication Technology, 2018, , 101-109.	0.7	1
33	Modularity in Product-Service Systems: Literature Review and Future Research Directions. IFIP Advances in Information and Communication Technology, 2018, , 150-158.	0.7	7
34	Understanding Changeability Enablers and Their Impact on Performance in Manufacturing Companies. IFIP Advances in Information and Communication Technology, 2018, , 297-304.	0.7	5
35	Challenges in Production and Manufacturing Systems Platform Development for Changeable Manufacturing. IFIP Advances in Information and Communication Technology, 2018, , 312-319.	0.7	3
36	Product-Process Modelling as an Enabler of Manufacturing Changeability. IFIP Advances in Information and Communication Technology, 2018, , 328-335.	0.7	3

THOMAS DITLEV BRUNOE

#	Article	IF	CITATIONS
37	Methodology for reconfigurable fixture architecture design. CIRP Journal of Manufacturing Science and Technology, 2018, 23, 172-186.	4.5	28
38	Mass Customization in Food Industries: Case and Literature Study. Springer Proceedings in Business and Economics, 2018, , 519-529.	0.3	3
39	Production Platform Development Through the Four Loops of Concern. Springer Proceedings in Business and Economics, 2018, , 479-493.	0.3	1
40	A Literature Review on Human Changeover Ability in High-Variety Production. IFIP Advances in Information and Communication Technology, 2018, , 442-448.	0.7	1
41	A Conceptual Digital Assistance System Supporting Manual Changeovers in High-Variety Production. IFIP Advances in Information and Communication Technology, 2018, , 449-455.	0.7	5
42	Product Configuration in the ETO and Capital Goods Industry: A Literature Review and Challenges. Springer Proceedings in Business and Economics, 2018, , 423-438.	0.3	6
43	Towards a generic design method for reconfigurable manufacturing systems. Journal of Manufacturing Systems, 2017, 42, 179-195.	13.9	125
44	Reconfigurable Manufacturing Systems in Small and Medium Enterprises. Springer Proceedings in Business and Economics, 2017, , 205-213.	0.3	9
45	Prerequisites and Barriers for the Development of Reconfigurable Manufacturing Systems for High Speed Ramp-up. Procedia CIRP, 2016, 51, 7-12.	1.9	39
46	Application of Module Drivers Creating Modular Manufacturing Equipment Enabling Changeability. Procedia CIRP, 2016, 52, 134-138.	1.9	4
47	Complexity Management in Mass Customization SMEs. Procedia CIRP, 2016, 51, 38-43.	1.9	22
48	Reconfigurable Manufacturing Potential in Small and Medium Enterprises with Low Volume and High Variety. Procedia CIRP, 2016, 51, 32-37.	1.9	17
49	Reconfigurable Manufacturing on Multiple Levels: Literature Review and Research Directions. IFIP Advances in Information and Communication Technology, 2015, , 266-273.	0.7	35
50	Investigating the Potential in Reconfigurable Manufacturing: A Case-Study from Danish Industry. IFIP Advances in Information and Communication Technology, 2015, , 274-282.	0.7	11
51	Platform-Based Production Development. IFIP Advances in Information and Communication Technology, 2015, , 53-61.	0.7	2
52	Planning Nervousness in Product Segmentation: Empirical Analysis of Decision Parameters. Lecture Notes in Computer Science, 2014, , 411-418.	1.3	0
53	Mass Customization and Performance Assessment: Overview and Research Directions. Lecture Notes in Production Engineering, 2014, , 333-347.	0.4	2
54	Mass Customization as Innovation Driver of International Competitiveness in Peripheral Regional SME Subcontractors. Lecture Notes in Production Engineering, 2014, , 349-357.	0.4	2

#	Article	IF	CITATIONS
55	Mass Customization Measurements Metrics. Lecture Notes in Production Engineering, 2014, , 359-375.	0.4	4
56	Customization Issues: A Four-Level Customization Model. Lecture Notes in Production Engineering, 2014, , 73-82.	0.4	2
57	Planning Nervousness in Product Segmentation: Literature Review and Research Agenda. Lecture Notes in Computer Science, 2014, , 403-410.	1.3	2
58	A Case Investigation of Product Structure Complexity in Mass Customization Using a Data Mining Approach. Lecture Notes in Production Engineering, 2014, , 17-25.	0.4	0
59	Danish Public Construction Counselling Selection and Assignment Criteria in European Tendering. Lecture Notes in Production Engineering, 2014, , 83-92.	0.4	0