Yasuyuki Matsuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7107872/publications.pdf

Version: 2024-02-01

248 papers 4,718 citations

35 h-index 60 g-index

250 all docs 250 docs citations

250 times ranked

3148 citing authors

#	Article	IF	CITATIONS
1	Highly Mobile Gapless Excitations in a Two-Dimensional Candidate Quantum Spin Liquid. Science, 2010, 328, 1246-1248.	6.0	366
2	A source of antihydrogen for in-flight hyperfine spectroscopy. Nature Communications, 2014, 5, 3089.	5 . 8	149
3	Micro-fracture behaviour induced by M-A constituent (Island Martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel. Acta Metallurgica, 1984, 32, 1779-1788.	2.1	148
4	Cascade hypernuclei in the(Kâ^',K+)reaction on12C. Physical Review C, 1998, 58, 1306-1309.	1.1	144
5	Synthesis of Cold Antihydrogen in a Cusp Trap. Physical Review Letters, 2010, 105, 243401.	2.9	135
6			

#	ARTICLE ment of the <mml:math <="" altimg="sil.gif" overflow="scroll" th=""><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
19	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd"	1.5	58
20	Pulsed source of ultra low energy positive muons for near-surface νSR studies. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 335-346.	0.6	57
21	(Kâ^', K+) reaction on nuclear targets at PK = 1.65 G. Nuclear Physics A, 1992, 546, 588-606.	0.6	54
22	BASE – The Baryon Antibaryon Symmetry Experiment. European Physical Journal: Special Topics, 2015, 224, 3055-3108.	1.2	53
23	a€œKa ppa€; a <mml:math altimg="si1.gif" overflow="scroll" xmins:mml="http://www.w3.org/1998/Math/Math/ML"><mml:mover accent="true"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mo>‾</mml:mo></mml:mover>p)n reactions. Physics Letters, Section B: Nuclear, Elementary</mml:math>	:m a \$h>-m	es ō 8
24	Search for the H dibaryon in (Kâ^¹, K+) reaction with scintillating fiber active target. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 378, 53-58.	1.5	52
25	Measurement of the parity violating asymmetry Aγ in. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 440, 729-735.	0.7	51
26	Enhanced ÎxÎx production near threshold in the 12C(Kâ^²,K+) reaction. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 444, 267-272.	1.5	48
27	A search for deeply bound kaonic nuclear states. Nuclear Physics A, 2005, 754, 375-382.	0.6	48

#	Article	IF	Citations
37	The ASACUSA antihydrogen and hydrogen program: results and prospects. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170273.	1.6	33
38	Parity nonconservation in neutron resonances in 238U. Physical Review C, 1998, 58, 1225-1235.	1.1	32
39	Parity nonconservation in neutron resonances in 232Th. Physical Review C, 1998, 58, 1236-1246.	1.1	32
40	YN CORRELATIONS FROM THE STOPPED K ^{â^'} REACTION ON ⁴ He . Modern Physics Letters A, 2008, 23, 2520-2523.	0.5	32
41	Highly sensitive superconducting circuits at $\hat{a}^4/700$ kHz with tunable quality factors for image-current detection of single trapped antiprotons. Review of Scientific Instruments, 2016, 87, 113305.	0.6	32
42	Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penning Trap. Physical Review Letters, 2021, 126, 041301.	2.9	32
43	Σ+p elastic scattering in the region of 300 â@½ pΣ ⩽ 600 MeV/c with a scintillating fiber target. Nuclear Physics A, 1999, 648, 263-279.	0.6	31
44	Comparative Characteristics of Slow Wave EEG, Autonomic Function and Clinical Picture in Typical and Atypical Schizophrenia During and Following Electroconvulsive Shock Treatment. International Pharmacopsychiatry, 1969, 3, 13-41.	0.4	30
45	Improved limit on the directly measured antiproton lifetime. New Journal of Physics, 2017, 19, 083023.	1.2	30
46	Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2003, 58, 1019-1030.	1.5	28
47	Quasifree reaction in nuclear emulsion. Nuclear Physics A, 1998, 644, 365-385.	0.6	27
48	Sympathetic cooling of protons and antiprotons with a common endcap Penning trap. Journal of Modern Optics, 2018, 65, 568-576.	0.6	27
49	Demonstration of the double Penning Trap technique with a single proton. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 723, 78-81.	1.5	26
50	Parity violation in neutron resonances in 107, 109 Ag. Physical Review C, 1999, 59, 1119-1130.	1.1	25
51	MIXING CHARACTERISTICS IN SLURRY STIRRED TANK REACTORS WITH MULTIPLE IMPELLERS. Chemical Engineering Communications, 1999, 171, 211-229.	1.5	25
52	A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio. Nature, 2022, 601, 53-57.	13.7	25
53	Novel preparation of Zein microspheres conjugated with PS-K available for cancer immunotherapy Chemical and Pharmaceutical Bulletin, 1989, 37, 757-759.	0.6	24
54	Development of a monoenergetic ultraslow antiproton beam source for high-precision investigation. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	24

#	Article	IF	CITATIONS
55	Search for the deeply bound K-pp state from the semi-inclusive forward-neutron spectrum in the in-flight K- reaction on helium-3. Progress of Theoretical and Experimental Physics, 2015, 2015, 61D01-0.	1.8	24
56	New Insights in Muon-CatalyzedddFusion by using Ortho-Para Controlled Solid Deuterium. Physical Review Letters, 2003, 90, 243401.	2.9	23
57	The scattering of muons in low-Z materials. Nuclear Instruments & Methods in Physics Research B, 2006, 251, 41-55.	0.6	23
58	An Arthropod Cuticular Chitin-binding Protein Endows Injured Sites with Transglutaminase-dependent Mesh. Journal of Biological Chemistry, 2007, 282, 37316-37324.	1.6	23
59	A Cysteine-rich Protein from an Arthropod Stabilizes Clotting Mesh and Immobilizes Bacteria at Injury Sites. Journal of Biological Chemistry, 2007, 282, 33545-33552.	1.6	23
60	A reservoir trap for antiprotons. International Journal of Mass Spectrometry, 2015, 389, 10-13.	0.7	23
61	vmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mover><mml:mi>K</mml:mi><mml:nbound <mml:math="" in="" state="" the="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mmultiscripts><mml:mi>He<mml:mrow><mml:mmultiscripts><mml:mi>He<mml:mrow><mml:mmultiscripts><mml:mi>He<mml:mrow><mml:mmultiscripts><mml:mi>He<mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td></td><td></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mi></mml:mmultiscripts></mml:mrow></mml:mi></mml:mmultiscripts></mml:mrow></mml:mi></mml:mmultiscripts></mml:mrow></mml:mi></mml:mmultiscripts></mml:mrow></mml:nbound></mml:mover></mml:mrow>		
	/> <mml:none< td=""><td></td><td></td></mml:none<>		

#	Article	IF	Citations
73	Birth of an intense pulsed muon source, J-PARC MUSE. Physica B: Condensed Matter, 2009, 404, 957-961.	1.3	17
74	Observation of individual spin quantum transitions of a single antiproton. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 769, 1-6.	1.5	17
75	Sympathetic cooling of a trapped proton mediated by an LC circuit. Nature, 2021, 596, 514-518.	13.7	17
76	Search for parity violation in 93Nb neutron resonances. Physical Review C, 1999, 59, 1131-1135.	1.1	16
77	Kaonic nuclear state search via reaction at rest on 4He target. Nuclear Physics A, 2008, 804, 186-196.	0.6	16
78	New Precision Measurement for Proton Zemach Radius with Laser Spectroscopy. International Journal of Modern Physics Conference Series, 2016, 40, 1660046.	0.7	16
79	Neutron resonance spectroscopy of 107Ag and 109Ag. Physical Review C, 1997, 56, 90-97.	1.1	15
80	An experimental investigation into vapor dispersion and solid suspension in boiling stirred tank reactors. Chemical Engineering and Processing: Process Intensification, 2002, 41, 267-279.	1.8	15
81	The super omega muon beamline at J-PARC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 132-134.	0.7	15
82	The K1.8BR spectrometer system at J-PARC. Progress of Theoretical and Experimental Physics, 2012, 2012,	1.8	15
83	Online full two-dimensional imaging of pulsed muon beams at J-PARC MUSE using a gated image intensifier. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 754, 1-9.	0.7	15
84	Measurement of the Strong Interaction Induced Shift and Width of the 1\$s\$ State of Kaonic Deuterium at J-PARC. Acta Physica Polonica B, 2015, 46, 101.	0.3	15
85	Parity nonconservation in neutron resonances in 133Cs. Physical Review C, 1999, 59, 1772-1779.	1.1	14
86	Discovery of Temperature-Dependent Phenomena of Muon-Catalyzed Fusion in Solid Deuterium and Tritium Mixtures. Physical Review Letters, 2003, 90, 043401.	2.9	14
87	Muonic atoms of radioactive nuclei. Nuclear Physics, Section B, Proceedings Supplements, 2005, 149, 390-392.	0.5	14
88	Protein S exacerbates alcoholic hepatitis by stimulating liver natural killer T cells. Journal of Thrombosis and Haemostasis, 2015, 13, 142-154.	1.9	14
89	Direct detection of antihydrogen atoms using a BGO crystal. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 840, 153-159.	0.7	14
90	Polarized3He system for T- and P-violation neutron experiments. Hyperfine Interactions, 1994, 84, 205-209.	0.2	13

#	Article	IF	CITATIONS
91	Parity nonconservation in 106Pd and 108Pd neutron resonances. Physical Review C, 1999, 60, .	1.1	13
92	Muon spectroscopy with trace alkaline-earth and rare-earth isotopes implanted in solid D2. Hyperfine Interactions, 2009, 193, 121-127.	0.2	13
93	Focusing Effect of MeV Muon Beam with a Tapered Capillary Method. Journal of the Physical Society of Japan, 2011, 80, 044501.	0.7	13
94	The first observation of muon-to-alpha sticking $\hat{Kl^2}$ X-rays in muon catalyzed D-T fusion. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 473, 226-232.	1.5	12
95	Parity violation in232Thneutron resonances above 250 eV. Physical Review C, 2000, 61, .	1.1	12
96	The muon science facility at the JAERI/KEK joint project. Physica B: Condensed Matter, 2003, 326, 255-259.	1.3	12
97	Design of the Large Acceptance Muon Beamline at J-PARC. AIP Conference Proceedings, 2008, , .	0.3	12
98	Influence of Nonenzymatic Glycation in Dentinal Collagen on Dental Caries. Journal of Dental Research, 2016, 95, 1528-1534.	2.5	12
99	New precise measurements of muonium hyperfine structure at J-PARC MUSE. EPJ Web of Conferences, 2019, 198, 00003.	0.1	12
100	Neutron resonance spectroscopy of 117 Snfrom 1 eV to 1.5 keV. Physical Review C, 1999, 59, 2836-2843.	1.1	11
101	Measurements of an ortho–para effect in muon-catalyzed fusion inÂsolid deuterium. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 509, 30-36.	1.5	11
102	Parity violation in neutron resonances of antimony and iodine. Physical Review C, 2001, 64, . Search for strange tribaryons in the <mml:math <="" altimg="sil.gif" overflow="scroll" td=""><td>1.1</td><td>11</td></mml:math>	1.1	11
103	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XiviLSchema" xmlns:xsi="http://www.w3.org/2001/XiviLSchema xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.5	11
104	Test of parity violation and time reversal invariance in slow neutron absorption reactions. Nuclear Physics A, 1994, 577, 433-442.	0.6	10
105	Neutron resonance spectroscopy of 103 Rhfrom 30 eV to 2 keV. Physical Review C, 1999, 60, .	1.1	10
106	Parity violation in neutron resonances in 115 In. Physical Review C, 2000, 61, .	1.1	10
107	High incidence of tumors in diabetic thrombin activatable fibrinolysis inhibitor and apolipoprotein E double-deficient mice. Journal of Thrombosis and Haemostasis, 2010, 8, 2514-2522.	1.9	10
108	The ASACUSA Micromegas Tracker: A cylindrical, bulk Micromegas detector for antimatter research. Review of Scientific Instruments, 2015, 86, 083304.	0.6	10

#	Article	IF	Citations
109	Recent Developments from ASACUSA on Antihydrogen Detection. EPJ Web of Conferences, 2018, 181, 01003.	0.1	10
110	Measurement of Ultralow Heating Rates of a Single Antiproton in a Cryogenic Penning Trap. Physical Review Letters, 2019, 122, 043201.	2.9	10
111	Measurement of the principal quantum number distribution in a beam of antihydrogen atoms. European Physical Journal D, 2021, 75, 1.	0.6	10
112	Parity violation in neutron resonances of 103Rh. Physical Review C, 1999, 60, .	1.1	9
113	Parity violation in neutron resonances of 117Sn. Physical Review C, 2001, 64, .	1.1	9
114	The first observation of slow muon beam at the RIKEN-RAL muon facility. Physica B: Condensed Matter, 2003, 326, 217-221.	1.3	9
115	J-PARC Muon Science Facility with use of 3 GeV Proton Beam. Nuclear Physics, Section B, Proceedings Supplements, 2005, 149, 393-395.	0.5	9
116	Status of the Superomega Muon Beam Line at J-PARC. Physics Procedia, 2012, 30, 34-37.	1.2	9
117	A search for deeply-bound kaonic nuclear state at the J-PARC E15 experiment. Nuclear Physics A, 2013, 914, 315-320.	0.6	9
118	Development of polarized 3He gas system as a spin analyzer for low energy neutrons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 402, 244-246.	0.7	8
119	H-dibaryon and hypernucleus formation in theΞâ~'12Creaction at rest. Physical Review C, 2000, 62, .	1.1	8
120	Measurement of parity-nonconserving rotation of neutron spin in the 0.734-eV p-wave resonance of 139La. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 534, 39-44.	1.5	8
121	Status of J-PARC muon science facility at the year of 2005. Physica B: Condensed Matter, 2006, 374-375, 484-487.	1.3	8
122	Antisense oligonucleotide targeting fibroblast growth factor receptor (FGFR)-1 stimulates cellular activity of hair follicles in aninAvitroorgan culture system. International Journal of Dermatology, 2007, 46, 259-263.	0.5	8
123	ASACUSA MUSASHI: New progress with intense ultra slow antiproton beam. Hyperfine Interactions, 2009, 194, 71-76.	0.2	8
124	Toward the first study of chemical reaction dynamics of Mu with vibrational-state-selected reactants in the gas phase: The reaction by stimulated Raman pumping. Physica B: Condensed Matter, 2009, 404, 1013-1016.	1.3	8
125	Photo Detachment of Negatively Charged Muonium in GaAs by Laser Irradiation. Physics Procedia, 2012, 30, 224-226.	1.2	8
126	Towards measuring the ground state hyperfine splitting of antihydrogen $\hat{a} \in \hat{a}$ a progress report. Hyperfine Interactions, 2016, 237, 1.	0.2	8

#	Article	IF	Citations
127	Measurement of the proton Zemach radius from the hyperfine splitting in muonic hydrogen atom. Journal of Physics: Conference Series, 2018, 1138, 012009.	0.3	8
128	Observation of parity-violating neutron spin rotation in the n-139La p-wave resonance. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 391, 11-14.	1.5	7
129	Measurements of F meson decays in nuclear matter at KEK-PS. Nuclear Physics A, 1998, 638, 435c-438c.	0.6	7
130	Title is missing!. Hyperfine Interactions, 2001, 138, 225-234.	0.2	7
131	Generation and investigation of radioactive muonic atoms in solid hydrogen films. Nuclear Physics A, 2003, 722, C523-C527.	0.6	7
132	Evidence for strong n–α correlations in the t+t reaction proved by the neutron energy distribution of muon catalyzed t–t fusion. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 557, 176-183.	1.5	7
133	Muonic Atoms of Unstable Nuclei. AIP Conference Proceedings, 2005, , . Dependence of muon-catalyzed <mml:math <="" altimg="si1.gif" overflow="scroll" td=""><td>0.3</td><td>7</td></mml:math>	0.3	7
134	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.5	7
135	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x Generation of low-energy muons with laser resonant ionization. Nuclear Physics, Section B, Proceedings Supplements, 2006, 155, 346-348.	0.5	7
136	Density effect in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi><mml:mtext>â€"</mml:mtext><mml:mi>d</mml:mi></mml:math> muon-catalyzed fusion with ortho- and para-enriched D2. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 658, 120-124.	1.5	7
137	Development of new μ–e decay counter in new multi-channel μSR spectrometer for intense pulsed muon beam. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 44-46.	0.7	7
138	Muons for spintronics: Photo-induced conduction electron polarization in n-type GaAs observed by the muonium method. Physica B: Condensed Matter, 2009, 404, 856-858.	1.3	7
139	Transcriptional activity of rice autonomous transposable element Dart. Journal of Plant Physiology, 2009, 166, 1537-1543.	1.6	7
140	Positron accumulation and manipulation for antihydrogen synthesis. Journal of Physics: Conference Series, 2010, 225, 012018.	0.3	7
141	Towards a high-precision measurement of the antiproton magnetic moment. Hyperfine Interactions, 2014, 228, 31-36.	0.2	7
142	New muonium HFS measurements at J-PARC/MUSE. Hyperfine Interactions, 2016, 237, 1.	0.2	7
143	Detection of Conduction Electron Spin Polarization in n-GaAs by Negative Muonium. Physics Procedia, 2012, 30, 231-234.	1.2	6
144	Superconducting Solenoid System with Adjustable Shielding Factor for Precision Measurements of the Properties of the Antiproton. Physical Review Applied, 2019, 12, .	1.5	6

#	Article	IF	CITATIONS
145	A hydrogen beam to characterize the ASACUSA antihydrogen hyperfine spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 935, 110-120.	0.7	6
146	Plasminogen Tochigi mice exhibit phenotypes similar to wild-type mice under experimental thrombotic conditions. PLoS ONE, 2017, 12, e0180981.	1.1	6
147	Sympathetic cooling schemes for separately trapped ions coupled via image currents. New Journal of Physics, 2022, 24, 033021.	1.2	6
148	A high-rate detection system to study parity violation with polarized epithermal neutrons at LANSCE. Journal of Neutron Research, 1996, 4, 209-213.	0.4	5
149	Progress in muonic atom spectroscopy with RI beams. Nuclear Physics A, 2004, 746, 621-624.	0.6	5
150	Preparation of ortho-para ratio controlled D2 gas for muon-catalyzed fusion. Review of Scientific Instruments, 2008, 79, 053502.	0.6	5
151	The magnetic moments of the proton and the antiproton. Journal of Physics: Conference Series, 2014, 488, 012033.	0.3	5
152	The development of the superconducting double cusp magnet for intense antihydrogen beams. Journal of Physics: Conference Series, 2015, 635, 022062.	0.3	5
153	The ASACUSA CUSP: an antihydrogen experiment. Hyperfine Interactions, 2015, 235, 13-20.	0.2	5
154	Quantum sensing of the electron electric dipole moment using ultracold entangled Fr atoms. Quantum Science and Technology, 2021, 6, 044008.	2.6	5
155	A novel rearrangement of S- to O-cyclonucleosides. Tetrahedron Letters, 1971, 12, 2965-2968.	0.7	4
156	The YN interaction from hyperon scattering. Nuclear Physics A, 1995, 585, 165-168.	0.6	4
157	Magnetic anomalies and structures in Ni/Mn multilayers. Journal of Magnetism and Magnetic Materials, 1999, 195, 307-326.	1.0	4
158	Strong n-α Correlations Observed in Muon Catalyzed t-t Fusion Reactions. Progress of Theoretical Physics Supplement, 2004, 154, 225-232.	0.2	4
159	Prospects for ultra-low-energy muon beam at J-PARC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 35-37.	0.7	4
160	A Search for Deeply-bound Kaonic Nuclear States by In-flight \$^3\$He(\$K^-, n\$) Reaction at J-PARC. Acta Physica Polonica B, 2014, 45, 767.	0.3	4
161	350-fold improved measurement of the antiproton magnetic moment using a multi-trap method. Hyperfine Interactions, $2018, 239, 1$.	0.2	4
162	Antiproton beams with low energy spread for antihydrogen production. Journal of Instrumentation, 2019, 14, P05009-P05009.	0.5	4

#	Article	IF	Citations
163	Studies of Nucleosides and Nucleotides. LVII. Purine Cyclonucleosides. (20). Synthesis and Reactions of 8, 5'-S-Cycloadenosine Derivatives. Chemical and Pharmaceutical Bulletin, 1974, 22, 1313-1318.	0.6	3
164	Neutron spin rotation and P-violation. Hyperfine Interactions, 1994, 84, 199-204.	0.2	3
165	Construction of the experimental set-up for ultra slow muon generation by thermal Mu ionization method at RIKEN-RAL. Physica B: Condensed Matter, 2000, 289-290, 666-669.	1.3	3
166	First observation of radiative photons associated with the $\hat{l}/4\hat{a}^{\circ}$ transfer process from ($\hat{t}/4\hat{a}^{\circ}$) to 3He through an intermediate ($\hat{t}/4\hat{a}^{\circ}$) mesomolecule. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 527, 43-49.	1.5	3
167	Muon spectroscopy with unstable nuclei. Journal of Physics G: Nuclear and Particle Physics, 2003, 29, 2047-2049.	1.4	3
168	Development of positron detector for μSR based on multi-pixel photon counter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 139-142.	0.7	3
169	The Status of the Superomega Muon Beamline. , 2011, , .		3
170	THE SEARCH FOR DEEPLY BOUND KAONIC NUCLEAR STATES AT J-PARC. International Journal of Modern Physics A, 2011, 26, 561-563.	0.5	3
171	Synthesis of antihydrogen atoms in a CUSP trap. Hyperfine Interactions, 2012, 209, 35-41.	0.2	3
172	J-PARC MUSE H-line optimization for the g-2 and MuHFS experiments. Journal of Physics: Conference Series, 2013, 408, 012073.	0.3	3
173	The development of the antihydrogen beam detector and the detection of the antihydrogen atoms for in-flight hyperfine spectroscopy. Journal of Physics: Conference Series, 2015, 635, 022061.	0.3	3
174	New precise measurement of muonium hyperfine structure interval at J-PARC. Hyperfine Interactions, 2017, 238, 1.	0.2	3
175	Monte-Carlo based performance assessment of ASACUSA's antihydrogen detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 910, 90-95.	0.7	3
176	Recent Results and Future Prospects of Kaonic Nuclei at J-PARC. Few-Body Systems, 2021, 62, 1.	0.7	3
177	Enhanced production of $\hat{\mathbf{b}}\hat{\mathbf{b}}$ pairs near threshold in the (K-,K+) reaction on 12C. Nuclear Physics A, 1998, 639, 379c-384c.	0.6	2
178	New search for parity violation in nonresonant neutron scattering on thorium. Physical Review C, 2000, 61 , .	1.1	2
179	Ultra-slow muon generation by laser resonant ionization towards the 21st century. Radiation Physics and Chemistry, 2001, 60, 521-524.	1.4	2
180	The Precise Measurement of the ν+ Lifetime. Hyperfine Interactions, 2001, 138, 445-450.	0.2	2

#	Article	IF	CITATIONS
181	Title is missing!. Hyperfine Interactions, 2001, 138, 235-240.	0.2	2
182	Parity violation in neutron resonances of palladium. Physical Review C, 2002, 65, .	1.1	2
183	Precise muon lifetime measurement at the RIKEN-RAL muon facility and prospects at a high intense muon source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 503, 283-286.	0.7	2
184	Generation of slow muon beam by laser resonant ionization of muonium atoms. Journal of Physics G: Nuclear and Particle Physics, 2003, 29, 2039-2041.	1.4	2
185	Precision spectroscopy of Kaonic Helium 3d → 2p X-rays. Nuclear Physics A, 2007, 790, 663c-666c.	0.6	2
186	Application of stimulated Raman pumping toward the first study of chemical reaction dynamics of the muonium atom with H2*. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S263-S266.	0.8	2
187	Pilot experiment for muonium photo ionization in GaAs. Journal of Physics: Conference Series, 2010, 225, 012004.	0.3	2
188	First accurate experimental study of Mu reactivity from a state-selected reactant in the gas phase: the $Mu + H < sub > 2 < sub > 1$ reaction rate at 300 K. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 045204.	0.6	2
189	Antihydrogen Synthesis in a Double-Cusp Trap. , 2017, , .		2
190	Progress towards an improved comparison of the proton-to-antiproton charge-to-mass ratios. Hyperfine Interactions, 2018, 239, 1.	0.2	2
191	General method for determination of configuration of steroid-17-yl methyl glycolates at C-20 Chemical and Pharmaceutical Bulletin, 1993, 41, 1481-1483.	0.6	1
192	Study of parity and time-reversal violation in neutron-nucleus interactions. AIP Conference Proceedings, 1995, , .	0.3	1
193	Hyperon-proton scattering experiments with a scintillating fiber detector at KEK. Nuclear Physics A, 1998, 639, 21c-28c.	0.6	1
194	Study of Muon-Catalyzed Fusion in Ortho–Para Controlled Solid Deuterium. Hyperfine Interactions, 2001, 138, 307-312.	0.2	1
195	Ultra-sensitive Detection of Hydrogen Isotopes by Lyman-α RIS. Journal of Nuclear Science and Technology, 2002, 39, 287-291.	0.7	1
196	Precise measurement of the positive muon lifetime at the RIKEN-RAL muon facility. Journal of Physics G: Nuclear and Particle Physics, 2003, 29, 2013-2015.	1.4	1
197	Radioactive Muonic Atom Studies with Intense Muon Beams. AIP Conference Proceedings, 2004, , .	0.3	1
198	Anomalous Temperature-Dependent Phenomena of Muon Catalyzed Fusion in Solid Deuterium and Tritium Mixtures. Progress of Theoretical Physics Supplement, 2004, 154, 233-240.	0.2	1

#	Article	IF	Citations
199	Recent Development of a point positive muon source at the RIKEN-RAL muon facility. AIP Conference Proceedings, 2004, , .	0.3	1
200	Precise Muon Lifetime Measurement with a Pulsed Beam at the RIKEN-RAL Muon Facility. Nuclear Physics, Section B, Proceedings Supplements, 2005, 149, 341-343.	0.5	1
201	Pulsed source of ultra low-energy muons at RIKEN-RAL. Physica B: Condensed Matter, 2006, 374-375, 456-459.	1.3	1
202	SOLVING THE KAONIC-HELIUM PUZZLE. Modern Physics Letters A, 2008, 23, 2505-2511.	0.5	1
203	SEARCH FOR STRANGE TRIBARYON STATES IN THE 4He(STOPPED K-, p) REACTION. International Journal of Modern Physics A, 2009, 24, 442-445.	0.5	1
204	Precision Spectroscopy of Kaonic Helium-3 Atoms X-rays at J-PARC. EPJ Web of Conferences, 2010, 3, 03017.	0.1	1
205	Precision spectroscopy of kaonic [sup 3]He X-rays at J-PARC. , 2011, , .		1
206	Spectroscopic study of $\hat{\nu}(1405)$ via the in-flight (K[sup $\hat{a}^{"}$],n) reaction on deuteron. , 2011, , .		1
207	STATUS AND PLANS OF EXPERIMENT E17 AT J-PARC. International Journal of Modern Physics A, 2011, 26, 604-606.	0.5	1
208	Muon density enhancement with a tapered capillary method., 2011,,.		1
209	A Search for Deeply Bound Kaonic Nuclear States at J-PARC. Few-Body Systems, 2013, 54, 1195-1199.	0.7	1
210	Towards a spin polarized antihydrogen beam. Hyperfine Interactions, 2014, 228, 67-76.	0.2	1
211	A search for theKâ^'ppbound state in the3He(Kâ^'in-flight,n) reaction at J-PARC. EPJ Web of Conferences, 2014, 66, 09008.	0.1	1
212	High-Precision Microwave Spectroscopy of Muonium for Determination of Muonic Magnetic Moment. International Journal of Modern Physics Conference Series, 2016, 40, 1660076.	0.7	1
213	Lamb shift measurement of antihydrogen for determining the charge radius of antiproton and a stringent test of CPT symmetry. Journal of Physics: Conference Series, 2017, 875, 022054.	0.3	1
214	Imaging antimatter with a Micromegas detector. Nuclear Instruments & Methods in Physics Research B, 2018, 422, 1-6.	0.6	1
215	Ultra-sensitive Detection of Hydrogen Isotopes by Lyman-α RIS. , 0, .		1
216	Manipulation and Transport of Antiprotons for an Efficient Production of Antihydrogen Atoms. , 2017, , .		1

#	Article	IF	CITATIONS
217	Present Status of Muonium HFS Measurement at J-PARC. , 2017, , .		1
218	Endoscopic studies on irregular shaped gastric ulcer. Gastroenterologia Japonica, 1971, 6, 237-238.	0.4	0
219	Neutron polarization for P- and T-violation experiments. Hyperfine Interactions, 1994, 84, 337-344.	0.2	0
220	Study of parity nonconversation with epithermal neutrons., 1997,,.		0
221	Parity violation in the compound nucleus. , 1999, , .		O
222	Parity violation at neutron resonances and related neutron spectroscopy experiments. European Physical Journal D, 2001, 51, A289-A298.	0.4	0
223	The Muon Science Facility at the JKJ Project. Hyperfine Interactions, 2001, 138, 475-482.	0.2	O
224	Upgrading the RIKEN-RAL Muon Facility. Hyperfine Interactions, 2001, 138, 489-495.	0.2	0
225	Precise measurement of the positive muon lifetime at the RIKEN-RAL muon facility. AIP Conference Proceedings, 2004, , .	0.3	O
226	Density effect in d - d  catalyzed fusion with ortho-and para-enriched deuterium. Hyperfine Interaction 2009, 193, 159-163.	ons, 0.2	0
227	A search for deeply-bound kaonic nuclear states at J-PARC. EPJ Web of Conferences, 2010, 3, 07015.	0.1	0
228	A search for deeply bound kaonic nuclear states at J-PARC. , 2010, , .		0
229	Precision spectroscopy of Kaonic helium-3 and helium-4 3d→2p X-rays. , 2010, , .		0
230	Performance Evaluation of Silicon Drift Detectors for a Precision X-ray Spectroscopy of Kaonic Helium-3. Journal of Physics: Conference Series, 2011, 312, 052009.	0.3	0
231	Precision Spectroscopy of Kaonic Helium-3 X-rays at J-PARC. Journal of Physics: Conference Series, 2011, 312, 022020.	0.3	O
232	Precision Spectroscopy of Kaonic Helium-3 X-rays at J-PARC. , 2011, , .		0
233	Antihydrogen atom formation in a CUSP trap towards spin polarized beams. Hyperfine Interactions, 2012, 212, 31-40.	0.2	O
234	Towards the production of anti-hydrogen beams. , 2013, , .		0

#	Article	IF	Citations
235	Search for the Kâ^'ppbound state via the in-flight 3He (Kâ^',n) reaction. EPJ Web of Conferences, 2014, 81, 02016.	0.1	0
236	Search for the K∹ pp bound state via the 3He(K∹, n) reaction at 1 GeV/c. Journal of Physics: Conference Series, 2014, 569, 012080.	0.3	0
237	Antihydrogen synthesis in a double-CUSP trap towards test of the CPT-symmetry. Hyperfine Interactions, 2016, 237, 1.	0.2	0
238	Towards a test of the weak equivalence principle of gravity using anti-hydrogen at CERN., 2016,,.		0
239	Study of the elementary ($K\hat{a}^{-}$, n) reactions to search for the $K\hat{A}^{-}NN$ bound state via the 3He ($K\hat{a}^{-}$, n) reaction at J-PARC. AIP Conference Proceedings, 2016, , .	0.3	0
240	STRANGE MULTI-BARYON AND KAONIC ATOMS., 2005, , .		0
241	Muon spectroscopy with trace alkaline-earth and rare-earth isotopes implanted in solid D2., 2009,, 121-127.		O
242	Density effect in d - d  catalyzed fusion with ortho-and para-enriched deuterium. , 2009, , 159-163.		0
243	Synthesis of antihydrogen atoms in a CUSP trap. , 2012, , 35-41.		0
244	Antihydrogen atom formation in a CUSP trap towards spin polarized beams. , 2012, , 31-40.		0
245	Design and syntheses of colon-specific pro-antedrugs for oral treatment of ulcerative colitis Drug Delivery System, 1991, 6, 365-374.	0.0	0
246	Precision spectroscopy of kaonic helium-4 X-rays., 2007,, 183-187.		0
247	Search for a kaonic nuclear state via 4He(Kâ^', N) reaction at rest. , 2007, , 195-200.		0
248	Experimental search of strange tribaryons in the 4He(K stop â^', n) reaction., 2007,, 201-205.		0