

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7107744/publications.pdf Version: 2024-02-01

ΧΗΥΛΝ

#	Article	IF	CITATIONS
1	One Step Fabrication and Application of Antibacterial Electrospun Zein/Cinnamon Oil Membrane Wound Dressing via In situ Electrospinning Process. Chemical Research in Chinese Universities, 2021, 37, 464-469.	1.3	12
2	Electrospun polyvinyl butyral/berberine membranes for antibacterial air filtration. Materials Letters: X, 2021, 10, 100074.	0.3	3
3	One-Step Preparation of a Core-Spun Cu/P(VDF-TrFE) Nanofibrous Yarn for Wearable Smart Textile to Monitor Human Movement. ACS Applied Materials & Interfaces, 2021, 13, 44234-44242.	4.0	41
4	Evidence for bicomponent fibers: A review. E-Polymers, 2021, 21, 636-653.	1.3	4
5	Fabrication of PANI-modified PVDF nanofibrous yarn for pH sensor. E-Polymers, 2021, 22, 69-74.	1.3	7
6	Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110766.	2.5	71
7	<i>In Situ</i> Electrospun Zein/Thyme Essential Oil-Based Membranes as an Effective Antibacterial Wound Dressing. ACS Applied Bio Materials, 2020, 3, 302-307.	2.3	39
8	In Situ Electrospinning Wound Healing Films Composed of Zein and Clove Essential Oil. Macromolecular Materials and Engineering, 2020, 305, 1900790.	1.7	36
9	Amino-functionalized polymethylmethacrylate-co-polyethyleneimine (PMMA-co-PEI) as a template to fabricate nano-silica. Materials Research Express, 2020, 7, 025010.	0.8	4
10	Measurement of Adhesion of In Situ Electrospun Nanofibers on Different Substrates by a Direct Pulling Method. Advances in Materials Science and Engineering, 2020, 2020, 1-8.	1.0	2
11	Fabrication of flexible SiO ₂ nanofibrous yarn via a conjugate electrospinning process. E-Polymers, 2020, 20, 600-605.	1.3	22
12	A newly reaction curing mechanism in conjugate electrospinning process. Materials Letters, 2019, 254, 5-8.	1.3	8
13	Electrospinning. , 2019, , 21-52.		34
14	Chitosan coated polyacrylonitrile nanofibrous mat for dye adsorption. International Journal of Biological Macromolecules, 2019, 135, 919-925.	3.6	68
15	Advances in portable electrospinning devices for <i>in situ</i> delivery of personalized wound care. Nanoscale, 2019, 11, 19166-19178.	2.8	97
16	In Situ Surface Modification of Paper-Based Relics with Atmospheric Pressure Plasma Treatment for Preservation Purposes. Polymers, 2019, 11, 786.	2.0	9
17	Physical Structure Induced Hydrophobicity Analyzed from Electrospinning and Coating Polyvinyl Butyral Films. Advances in Condensed Matter Physics, 2019, 2019, 1-5.	0.4	16
18	Fabrication of Ultrafine PPS Fibers with High Strength and Tenacity via Melt Electrospinning. Polymers, 2019, 11, 530.	2.0	19

Xu Yan

#	Article	IF	CITATIONS
19	Advances in flexible and wearable pH sensors for wound healing monitoring. Journal of Semiconductors, 2019, 40, 111607.	2.0	39
20	Efficient Synthesis of PVDF/PI Side-by-Side Bicomponent Nanofiber Membrane with Enhanced Mechanical Strength and Good Thermal Stability. Nanomaterials, 2019, 9, 39.	1.9	60
21	Reversible photochromic nanofibrous membranes with excellent water/windproof and breathable performance. Journal of Applied Polymer Science, 2018, 135, 46342.	1.3	27
22	A self-powered flexible hybrid piezoelectric–pyroelectric nanogenerator based on non-woven nanofiber membranes. Journal of Materials Chemistry A, 2018, 6, 3500-3509.	5.2	161
23	A highly stretchable humidity sensor based on spandex covered yarns and nanostructured polyaniline. RSC Advances, 2018, 8, 1078-1082.	1.7	40
24	Giant spontaneous exchange bias obtained by tuning magnetic compensation in samarium ferrite single crystals. Physical Chemistry Chemical Physics, 2018, 20, 3687-3693.	1.3	17
25	Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. International Journal of Biological Macromolecules, 2018, 106, 768-774.	3.6	124
26	In Situ Electrospinning Iodine-Based Fibrous Meshes for Antibacterial Wound Dressing. Nanoscale Research Letters, 2018, 13, 309.	3.1	74
27	Bubble Melt Electrospinning for Production of Polymer Microfibers. Polymers, 2018, 10, 1246.	2.0	16
28	Electrospinning of Carboxymethyl Chitosan/Polyoxyethylene Oxide Nanofibers for Fruit Fresh-Keeping. Nanoscale Research Letters, 2018, 13, 239.	3.1	32
29	Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery. Chemical Engineering Journal, 2018, 349, 554-561.	6.6	61
30	Solvent-free two-component electrospinning of ultrafine polymer fibers. New Journal of Chemistry, 2018, 42, 11739-11745.	1.4	6
31	Chitosan nanostructures by in situ electrospinning for high-efficiency PM2.5 capture. Nanoscale, 2017, 9, 4154-4161.	2.8	70
32	Multicolor Tuning in Roomâ€Temperature Selfâ€Activated Ca ₂ Nb ₂ O ₇ Submicroplates by Lanthanide Doping. ChemPhysChem, 2017, 18, 269-273.	1.0	9
33	Solvent-free electrospinning: opportunities and challenges. Polymer Chemistry, 2017, 8, 333-352.	1.9	65
34	Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide. Applied Physics Letters, 2017, 110, .	1.5	37
35	Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production. Macromolecular Materials and Engineering, 2017, 302, 1700002.	1.7	121
36	Magnetization and low temperature heat capacity of SmFeO3 single crystal. Journal of Magnetism and Magnetic Materials, 2017, 443, 104-106.	1.0	7

Xu Yan

#	Article	IF	CITATIONS
37	Portable melt electrospinning apparatus without an extra electricity supply. RSC Advances, 2017, 7, 33132-33136.	1.7	13
38	Colorimetric Humidity Sensors Based on Electrospun Polyamide/CoCl2 Nanofibrous Membranes. Nanoscale Research Letters, 2017, 12, 360.	3.1	34
39	Flexible Polyaniline/Poly(methyl methacrylate) Composite FibersviaElectrospinning and In Situ Polymerization for Ammonia Gas Sensing and Strain Sensing. Journal of Nanomaterials, 2016, 2016, 1-8.	1.5	11
40	Electrospun PEDOT:PSS/PVP Nanofibers for CO Gas Sensing with Quartz Crystal Microbalance Technique. International Journal of Polymer Science, 2016, 2016, 1-6.	1.2	20
41	In situ precise electrospinning of medical glue fibers as nonsuture dural repair with high sealing capability and flexibility. International Journal of Nanomedicine, 2016, Volume 11, 4213-4220.	3.3	20
42	Simple piezoelectric ceramic generator-based electrospinning apparatus. RSC Advances, 2016, 6, 66252-66255.	1.7	7
43	Colorful Hydrophobic Poly(Vinyl Butyral)/Cationic Dye Fibrous Membranes via a Colored Solution Electrospinning Process. Nanoscale Research Letters, 2016, 11, 540.	3.1	21
44	Recent advances in melt electrospinning. RSC Advances, 2016, 6, 53400-53414.	1.7	75
45	Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures. Materials Science and Engineering C, 2016, 64, 341-345.	3.8	33
46	Ecofriendly fabrication of ultrathin colorful fibers via UV-assisted solventless electrospinning. RSC Advances, 2016, 6, 86597-86601.	1.7	11
47	Effect of Ce doping on the optoelectronic and sensing properties of electrospun ZnO nanofibers. RSC Advances, 2016, 6, 85727-85734.	1.7	20
48	Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing. Nanoscale Research Letters, 2016, 11, 426.	3.1	11
49	Solvent-free thermocuring electrospinning to fabricate ultrathin polyurethane fibers with high conductivity by in situ polymerization of polyaniline. RSC Advances, 2016, 6, 106945-106950.	1.7	18
50	Optical contrast spectra studies for determining thickness of stage-1 graphene-FeCl3 intercalation compounds. AIP Advances, 2016, 6, 075219.	0.6	2
51	Creating Recoverable Mechanoluminescence in Piezoelectric Calcium Niobates through Pr ³⁺ Doping. Chemistry of Materials, 2016, 28, 4052-4057.	3.2	109
52	Solvent-free electrospinning of UV curable polymer microfibers. RSC Advances, 2016, 6, 29423-29427.	1.7	26
53	In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale, 2016, 8, 3482-3488.	2.8	146
54	Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale, 2016, 8, 2944-2950.	2.8	129

Xu Yan

#	Article	IF	CITATIONS
55	A portable electrospinning apparatus based on a small solar cell and a hand generator: design, performance and application. Nanoscale, 2016, 8, 209-213.	2.8	41
56	Electrical transport properties of an isolated CdS microrope composed of twisted nanowires. Nanoscale Research Letters, 2015, 10, 21.	3.1	7
57	Electrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors. Nanoscale Research Letters, 2015, 10, 475.	3.1	30
58	Self-powered electrospinning apparatus based on a hand-operated Wimshurst generator. Nanoscale, 2015, 7, 5603-5606.	2.8	22
59	A battery-operated portable handheld electrospinning apparatus. Nanoscale, 2015, 7, 12351-12355.	2.8	92
60	Melt electrospinning of poly(lactic acid) and polycaprolactone microfibers by using a hand-operated Wimshurst generator. Nanoscale, 2015, 7, 16611-16615.	2.8	61
61	Color Manipulation of Intense Multiluminescence from CaZnOS:Mn ²⁺ by Mn ²⁺ Concentration Effect. Chemistry of Materials, 2015, 27, 7481-7489.	3.2	149
62	Electrospun anatase TiO ₂ nanorods for flexible optoelectronic devices. RSC Advances, 2014, 4, 46152-46156.	1.7	24
63	Twisted microropes for stretchable devices based on electrospun conducting polymer fibers doped with ionic liquid. Journal of Materials Chemistry C, 2014, 2, 8962-8966.	2.7	18
64	Electron Correlation and Impurity-Induced Quasiparticle Resonance States in Cuprate Superconductors. Journal of the Physical Society of Japan, 2013, 82, 114713.	0.7	3