Roberto Mallone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7107635/publications.pdf

Version: 2024-02-01

100 papers 4,084 citations

34 h-index 133063 59 g-index

109 all docs

109 docs citations

109 times ranked 4933 citing authors

#	Article	IF	CITATIONS
1	Personalized Immunotherapies for Type 1 Diabetes: Who, What, When, and How?. Journal of Personalized Medicine, 2022, 12, 542.	1.1	10
2	Insulin allergy: a diagnostic and therapeutic strategy based on a retrospective cohort and a case–control study. Diabetologia, 2022, , .	2.9	3
3	Self-antigens, benign autoimmunity and type 1 diabetes: a beta-cell and T-cell perspective. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 370-378.	1.2	5
4	Peptidylarginine Deiminase Inhibition Prevents Diabetes Development in NOD Mice. Diabetes, 2021, 70, 516-528.	0.3	25
5	Presumption of guilt for T cells in type 1 diabetes: lead culprits or partners in crime depending on age of onset?. Diabetologia, 2021, 64, 15-25.	2.9	37
6	Validation in the general population of a C-peptide estimate equation to measure beta cell function in recent-onset type 1 diabetes. Acta Diabetologica, 2021, 58, 115-117.	1,2	1
7	Making Insulin and Staying Out of Autoimmune Trouble: The Beta-Cell Conundrum. Frontiers in Immunology, 2021, 12, 639682.	2.2	16
8	The SAgA of Antigen-Specific Immunotherapy for Type 1 Diabetes. Diabetes, 2021, 70, 1247-1249.	0.3	2
9	Means, Motive, and Opportunity: Do Non-Islet-Reactive Infiltrating T Cells Contribute to Autoimmunity in Type 1 Diabetes?. Frontiers in Immunology, 2021, 12, 683091.	2.2	4
10	Oral Fc-Coupled Preproinsulin Achieves Systemic and Thymic Delivery Through the Neonatal Fc Receptor and Partially Delays Autoimmune Diabetes. Frontiers in Immunology, 2021, 12, 616215.	2,2	4
11	Immunoregulated insulitis and slow-progressing type 1 diabetes after duodenopancreatectomy. Diabetologia, 2021, 64, 2731-2740.	2.9	4
12	CD8+ T cells variably recognize native versus citrullinated GRP78 epitopes in type 1 diabetes. Diabetes, 2021, 70, db210259.	0.3	11
13	Editorial: Footprints of Immune Cells in the Type 1 Diabetic Pancreas. Frontiers in Endocrinology, 2021, 12, 767012.	1.5	0
14	miR-409-3p is reduced in plasma and islet immune infiltrates of NOD diabetic mice and is differentially expressed in people with type 1 diabetes. Diabetologia, 2020, 63, 124-136.	2.9	23
15	Peptides Derived From Insulin Granule Proteins Are Targeted by CD8+ T Cells Across MHC Class I Restrictions in Humans and NOD Mice. Diabetes, 2020, 69, 2678-2690.	0.3	34
16	Presumption of innocence for beta cells: why are they vulnerable autoimmune targets in type 1 diabetes?. Diabetologia, 2020, 63, 1999-2006.	2.9	72
17	Corona Pandemic: Assisted Isolation and Care to Protect Vulnerable Populations May Allow Us to Shorten the Universal Lock-Down and Gradually Re-open Society. Frontiers in Public Health, 2020, 8, 562901.	1.3	2
18	T-Cell Epitopes and Neo-epitopes in Type 1 Diabetes: A Comprehensive Update and Reappraisal. Diabetes, 2020, 69, 1311-1335.	0.3	62

#	Article	IF	CITATIONS
19	Multiplex T Cell Stimulation Assay Utilizing a T Cell Activation Reporter-Based Detection System. Frontiers in Immunology, 2020, $11,633$.	2.2	25
20	Les voies de recherche pour prévenir le diabà te de type 1. Medecine Des Maladies Metaboliques, 2020, 14, 391-392.	0.1	0
21	Structure and function of the exocrine pancreas in patients with type 1 diabetes. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 129-149.	2.6	35
22	InÂVitro Expansion of Anti-viral T Cells from Cord Blood by Accelerated Co-cultured Dendritic Cells. Molecular Therapy - Methods and Clinical Development, 2019, 13, 112-120.	1.8	2
23	NUOVI ANTIGENI BETA CELLULARI:POSSIBILI APPLICAZIONI DIAGNOSTICHE E TERAPEUTICHE. Il Diabete, 2019, 31, 57-62.	0.0	0
24	Islet-reactive CD8 $<$ sup $>+sup> T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Science Immunology, 2018, 3, .$	5.6	171
25	Combinatorial detection of autoreactive CD8+ T cells with HLA-A2 multimers: a multi-centre study by the Immunology of Diabetes Society T Cell Workshop. Diabetologia, 2018, 61, 658-670.	2.9	22
26	The Effect of Age on the Progression and Severity of Type 1 Diabetes: Potential Effects on Disease Mechanisms. Current Diabetes Reports, 2018, 18, 115.	1.7	32
27	Inflammation-Induced Citrullinated Glucose-Regulated Protein 78 Elicits Immune Responses in Human Type 1 Diabetes. Diabetes, 2018, 67, 2337-2348.	0.3	56
28	Autoimmune pancreatitis after nivolumab anti–programmed death receptor-1 treatment. European Journal of Cancer, 2018, 104, 243-246.	1.3	17
29	Conventional and Neo-antigenic Peptides Presented by \hat{l}^2 Cells Are Targeted by Circulating Na \tilde{A}^- ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	7.2	177
30	Decreased \hat{l} ±-cell mass and early structural alterations of the exocrine pancreas in patients with type 1 diabetes: An analysis based on the nPOD repository. PLoS ONE, 2018, 13, e0191528.	1.1	30
31	Long-term exposure to Myozyme results in a decrease of anti-drug antibodies in late-onset Pompe disease patients. Scientific Reports, 2016, 6, 36182.	1.6	22
32	\hat{l}^2 -cell Mass in Nondiabetic Autoantibody-Positive Subjects: An Analysis Based on the Network for Pancreatic Organ Donors Database. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1390-1397.	1.8	25
33	Reduced naÃ⁻ve <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell priming efficacy in elderly adults. Aging Cell, 2016, 15, 14-21.	3.0	112
34	Loss of immune tolerance to IL-2 in type 1 diabetes. Nature Communications, 2016, 7, 13027.	5.8	28
35	Characterization of immune response to novel HLA-A2-restricted epitopes from zinc transporter 8 in type 1 diabetes. Vaccine, 2016, 34, 854-862.	1.7	19
36	Priming of Qualitatively Superior Human Effector CD8+ T Cells Using TLR8 Ligand Combined with FLT3 Ligand. Journal of Immunology, 2016, 196, 256-263.	0.4	39

3

#	Article	IF	CITATIONS
37	Materno-Fetal Transfer of Preproinsulin Through the Neonatal Fc Receptor Prevents Autoimmune Diabetes. Diabetes, 2015, 64, 3532-3542.	0.3	24
38	Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. Journal of Autoimmunity, 2015, 58, 48-58.	3.0	214
39	Regulation of immune responses to protein therapeutics by transplacental induction of T cell tolerance. Science Translational Medicine, 2015, 7, 275ra21.	5.8	43
40	Of Bugs and Men: Antigen-Fortified Lactoccoccus lactis for Type 1 Diabetes Immunotherapy. Diabetes, 2014, 63, 2603-2605.	0.3	3
41	A Rapid Lateral Flow Immunoassay for the Detection of Tyrosine Phosphatase-Like Protein IA-2 Autoantibodies in Human Serum. PLoS ONE, 2014, 9, e103088.	1.1	14
42	Biomarkers for immune intervention trials in type 1 diabetes. Clinical Immunology, 2013, 149, 286-296.	1.4	25
43	Immunodominance of HLA-B27-restricted HIV KK10-specific CD8+ T-cells is not related to naÃ-ve precursor frequency. Immunology Letters, 2013, 149, 119-122.	1.1	11
44	MECHANISMS IN ENDOCRINOLOGY: Insulin and type 1 diabetes: immune connections. European Journal of Endocrinology, 2013, 168, R19-R31.	1.9	26
45	Infectious triggers in type 1 diabetes: is there a case for epitope mimicry?. Diabetes, Obesity and Metabolism, 2013, 15, 82-88.	2.2	17
46	Regulatory T cell phenotype and function 4 years after GAD-alum treatment in children with type 1 diabetes. Clinical and Experimental Immunology, 2013, 172, 394-402.	1.1	13
47	Navigating diabetes-related immune epitope data: re-sources and tools provided by the Immune Epitope Da-tabase (IEDB). Immunome Research, 2013, 9, .	0.1	6
48	A Simple and Fast Non-Radioactive Bridging Immunoassay for Insulin Autoantibodies. PLoS ONE, 2013, 8, e69021.	1.1	8
49	MHC Class II Tetramers Made from Isolated Recombinant $\hat{l}\pm$ and \hat{l}^2 Chains Refolded with Affinity-Tagged Peptides. PLoS ONE, 2013, 8, e73648.	1.1	13
50	Three sensitive assays do not provide evidence for circulating HuD-specific T cells in the blood of patients with paraneoplastic neurological syndromes with anti-Hu antibodies. Neuro-Oncology, 2012, 14, 841-848.	0.6	12
51	HLA-B7–Restricted Islet Epitopes Are Differentially Recognized in Type 1 Diabetic Children and Adults and Form Weak Peptide-HLA Complexes. Diabetes, 2012, 61, 2546-2555.	0.3	19
52	Immune biomarkers in immunotherapeutic trials for type 1 diabetes: Cui prodest?. Diabetes and Metabolism, 2012, 38, 379-385.	1.4	6
53	Shortâ€term subcutaneous insulin treatment delays but does not prevent diabetes in <scp>NOD</scp> mice. European Journal of Immunology, 2012, 42, 1553-1561.	1.6	15
54	Zinc transporter (ZnT)8186–194 is an immunodominant CD8+ T cell epitope in HLA-A2+ type 1 diabetic patients. Diabetologia, 2012, 55, 2026-2031.	2.9	53

#	Article	IF	CITATIONS
55	Beyond the Hormone: Insulin as an Autoimmune Target in Type 1 Diabetes. Endocrine Reviews, 2011, 32, 623-669.	8.9	60
56	Antibodies Recognizing Mycobacterium avium paratuberculosis Epitopes Cross-React with the Beta-Cell Antigen ZnT8 in Sardinian Type 1 Diabetic Patients. PLoS ONE, 2011, 6, e26931.	1.1	53
57	T Cells Recognizing a Peptide Contaminant Undetectable by Mass Spectrometry. PLoS ONE, 2011, 6, e28866.	1.1	5
58	acDCs enhance human antigen–specific T-cell responses. Blood, 2011, 118, 2128-2137.	0.6	45
59	Pathogenic and Regulatory T Cells in Type 1 Diabetes: Losing Self-Control, Restoring It, and How to Take the Temperature. Current Diabetes Reports, 2011, 11, 426-433.	1.7	6
60	Immunology of Diabetes Society Tâ€Cell Workshop: HLA class I tetramerâ€directed epitope validation initiative Tâ€Cell Workshop Reportâ€"HLA Class I Tetramer Validation Initiative. Diabetes/Metabolism Research and Reviews, 2011, 27, 720-726.	1.7	25
61	Immunology of Diabetes Society Tâ€Cell Workshop: HLA class II tetramerâ€directed epitope validation initiative. Diabetes/Metabolism Research and Reviews, 2011, 27, 727-736.	1.7	25
62	Comparison of cryopreservation methods on Tâ€eell responses to islet and control antigens from type 1 diabetic patients and controls. Diabetes/Metabolism Research and Reviews, 2011, 27, 737-745.	1.7	21
63	Viral infection prevents diabetes by inducing regulatory T cells through NKT cell–plasmacytoid dendritic cell interplay. Journal of Experimental Medicine, 2011, 208, 729-745.	4.2	80
64	Antigen-Based Immune Therapeutics for Type 1 Diabetes: Magic Bullets or Ordinary Blanks?. Clinical and Developmental Immunology, 2011, 2011, 1-15.	3.3	29
65	T Cell Recognition of Autoantigens in Human Type 1 Diabetes: Clinical Perspectives. Clinical and Developmental Immunology, 2011, 2011, 1-16.	3.3	66
66	To B or Not to B: (Anti)bodies of Evidence on the Crime Scene of Type 1 Diabetes?. Diabetes, 2011, 60, 2020-2022.	0.3	15
67	Evidence That Nasal Insulin Induces Immune Tolerance to Insulin in Adults With Autoimmune Diabetes. Diabetes, 2011, 60, 1237-1245.	0.3	106
68	Single Insulin-Specific CD8+ T Cells Show Characteristic Gene Expression Profiles in Human Type 1 Diabetes. Diabetes, 2011, 60, 3289-3299.	0.3	33
69	Long-Lasting Immune Responses 4 Years after GAD-Alum Treatment in Children with Type 1 Diabetes. PLoS ONE, 2011, 6, e29008.	1.1	35
70	Critical parameters in blood processing for T-cell assays: Validation on ELISpot and tetramer platforms. Journal of Immunological Methods, 2010, 359, 28-36.	0.6	33
71	Current approaches to measuring human islet-antigen specific T cell function in type 1 diabetes. Clinical and Experimental Immunology, 2010, 162, 197-209.	1.1	54
72	21-Hydroxylase epitopes are targeted by CD8 T cells in autoimmune Addison's disease. Journal of Autoimmunity, 2010, 35, 309-315.	3.0	32

#	Article	IF	CITATIONS
73	Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clinical and Experimental Immunology, 2010, 163, 33-49.	1.1	213
74	Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 2009, 52, 1391-1399.	2.9	241
75	T cells in the pathogenesis of type 1 diabetes. Current Diabetes Reports, 2008, 8, 101-106.	1.7	32
76	Measurement of CD8 ⁺ T Cell Responses in Human Type 1 Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 61-67.	1.8	19
77	Serum-free culture medium and IL-7 costimulation increase the sensitivity of ELISpot detection. Journal of Immunological Methods, 2008, 333, 61-70.	0.6	23
78	Equivalent Specificity of Peripheral Blood and Islet-Infiltrating CD8+ T Lymphocytes in Spontaneously Diabetic HLA-A2 Transgenic NOD Mice. Journal of Immunology, 2008, 180, 5430-5438.	0.4	35
79	The Frequency and Immunodominance of Islet-Specific CD8+ T-cell Responses Change after Type 1 Diabetes Diagnosis and Treatment. Diabetes, 2008, 57, 1312-1320.	0.3	83
80	Immunization of HLA Class I Transgenic Mice Identifies Autoantigenic Epitopes Eliciting Dominant Responses in Type 1 Diabetes Patients. Journal of Immunology, 2007, 178, 7458-7466.	0.4	41
81	CD8+ T-Cell Responses Identify Â-Cell Autoimmunity in Human Type 1 Diabetes. Diabetes, 2007, 56, 613-621.	0.3	172
82	HLA Class I Epitope Discovery in Type 1 Diabetes. Annals of the New York Academy of Sciences, 2006, 1079, 190-197.	1.8	15
83	Anti-CD38 autoantibodies in type? diabetes. Diabetes/Metabolism Research and Reviews, 2006, 22, 284-294.	1.7	15
84	Targeting T Lymphocytes for Immune Monitoring and Intervention in Autoimmune Diabetes. American Journal of Therapeutics, 2005, 12, 534-550.	0.5	24
85	Functional avidity directs T-cell fate in autoreactive CD4+ T cells. Blood, 2005, 106, 2798-2805.	0.6	59
86	GAD65-Specific CD4+ T-Cells with High Antigen Avidity Are Prevalent in Peripheral Blood of Patients With Type 1 Diabetes. Diabetes, 2004, 53, 1987-1994.	0.3	100
87	Differential Recognition and Activation Thresholds in Human Autoreactive GAD-Specific T-Cells. Diabetes, 2004, 53, 971-977.	0.3	44
88	MHC Class II tetramers and the pursuit of antigen-specific T cells: define, deviate, delete. Clinical Immunology, 2004, 110, 232-242.	1.4	59
89	Loss of CD38 correlates with simultaneous up-regulation of human leukocyte antigen-DR in benign prostatic glands, but not in fetal or androgen-ablated glands, and is strongly related to gland atrophy. BJU International, 2003, 91, 409-416.	1.3	15
90	Worsening of hypertension in a pregnant woman with renal arteriovenous malformation: a successful superselective embolization after delivery. Clinical Nephrology, 2003, 60, 211-213.	0.4	10

#	Article	IF	CITATION
91	Autoantibodies to fibroblasts induce a proadhesive and proinflammatory fibroblast phenotype in patients with systemic sclerosis. Arthritis and Rheumatism, 2002, 46, 1602-1613.	6.7	137
92	Anti-CD38 autoantibodies: Characterisation in new-onset Type I diabetes and latent autoimmune diabetes of the adult (LADA) and comparison with other islet autoantibodies. Diabetologia, 2002, 45, 1667-1677.	2.9	37
93	Arsenic Trioxide and Breast Cancer: Analysis of the Apoptotic, Differentiative and Immunomodulatory Effects. Breast Cancer Research and Treatment, 2002, 73, 61-73.	1.1	78
94	Human Accessory Cells Activate Fresh, Normal, Tumor–Distant T Lymphocytes But Not Tumor–Infiltrating T Lymphocytes to Lyse Autologous Tumor Cells in a Primary Cytotoxic T Lymphocyte Assay in Renal Cell Carcinoma. European Urology, 2001, 40, 427-433.	0.9	2
95	Human CD38 and its ligand CD31 define a uniquelamina propriaT lymphocyte signaling pathway. FASEB Journal, 2001, 15, 580-582.	0.2	33
96	Autoantibody Response to CD38 in Caucasian Patients With Type 1 and Type 2 Diabetes: Immunological and Genetic Characterization. Diabetes, 2001, 50, 752-762.	0.3	42
97	Signaling through CD38 induces NK cell activation. International Immunology, 2001, 13, 397-409.	1.8	73
98	CD38 expressed on human monocytes: A coaccessory molecule in the superantigen-induced proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2840-2845.	3.3	47
99	Characterization of murine monoclonal anti-endothelial cell antibodies (AECA) produced by idiotypic manipulation with human AECA. International Immunology, 1998, 10, 861-868.	1.8	25
100	Characterization of a CD38-like 78-kilodalton soluble protein released from B cell lines derived from patients with X-linked agammaglobulinemia Journal of Clinical Investigation, 1998, 101, 2821-2830.	3.9	36