Pierre Hardy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7107560/publications.pdf Version: 2024-02-01

DIEDDE HADDV

#	Article	IF	CITATIONS
1	The Role of MiR-181 Family Members in Endothelial Cell Dysfunction and Tumor Angiogenesis. Cells, 2022, 11, 1670.	4.1	6
2	Emerging roles of microRNAs and their implications in uveal melanoma. Cellular and Molecular Life Sciences, 2021, 78, 545-559.	5.4	12
3	Clinical applications of nanomedicines in lung cancer treatment. Acta Biomaterialia, 2021, 121, 134-142.	8.3	42
4	Lymphocytic microparticles suppress retinal angiogenesis via targeting Müller cells in the ischemic retinopathy mouse model. Experimental Cell Research, 2021, 399, 112470.	2.6	5
5	Tyrosine-Protein Phosphatase Non-receptor Type 9 (PTPN9) Negatively Regulates the Paracrine Vasoprotective Activity of Bone-Marrow Derived Pro-angiogenic Cells: Impact on Vascular Degeneration in Oxygen-Induced Retinopathy. Frontiers in Cell and Developmental Biology, 2021, 9, 679906.	3.7	1
6	MicroRNA-181a suppresses norethisterone-promoted tumorigenesis of breast epithelial MCF10A cells through the PGRMC1/EGFR–PI3K/Akt/mTOR signaling pathway. Translational Oncology, 2021, 14, 101068.	3.7	6
7	Histone deacetylase (HDAC) 9: versatile biological functions and emerging roles in human cancer. Cellular Oncology (Dordrecht), 2021, 44, 997-1017.	4.4	14
8	Potential of miRNA-Based Nanotherapeutics for Uveal Melanoma. Cancers, 2021, 13, 5192.	3.7	9
9	Activation of NLRP3 inflammasome by lymphocytic microparticles via TLR4 pathway contributes to airway inflammation. Experimental Cell Research, 2020, 386, 111737.	2.6	9
10	Survivin silencing improved the cytotoxicity of carboplatin and melphalan in Y79 and primary retinoblastoma cells. International Journal of Pharmaceutics, 2020, 589, 119824.	5.2	6
11	Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm. Frontiers in Pharmacology, 2020, 11, 602999.	3.5	17
12	Extracellular microparticles exacerbate oxidative damage to retinal pigment epithelial cells. Experimental Cell Research, 2020, 390, 111957.	2.6	11
13	Laserâ€induced plasmonâ€mediated treatment of retinoblastoma in viscous vitreous phantom. Journal of Biophotonics, 2019, 12, e201900193.	2.3	7
14	Immunometabolic modulation of retinal inflammation by CD36 ligand. Scientific Reports, 2019, 9, 12903.	3.3	16
15	Co-delivery of miR-181a and melphalan by lipid nanoparticles for treatment of seeded retinoblastoma. Journal of Controlled Release, 2019, 298, 177-185.	9.9	64
16	micro <scp>RNA</scp> â€181a inhibits ocular neovascularization by interfering with vascular endothelial growth factor expression. Cardiovascular Therapeutics, 2018, 36, e12329.	2.5	15
17	Micro-RNA-181a suppresses progestin-promoted breast cancer cell growth. Maturitas, 2018, 114, 60-66.	2.4	13
18	The Dual Regulatory Role of MiR-181a in Breast Cancer. Cellular Physiology and Biochemistry, 2017, 44, 843-856.	1.6	82

PIERRE HARDY

#	Article	IF	CITATIONS
19	Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization. Scientific Reports, 2016, 6, 37391.	3.3	20
20	MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget, 2016, 7, 19171-19184.	1.8	75
21	Generation of Lymphocytic Microparticles and Detection of their Proapoptotic Effect on Airway Epithelial Cells. Journal of Visualized Experiments, 2015, , e52651.	0.3	4
22	SYK is a target of lymphocyte-derived microparticles in the induction of apoptosis of human retinoblastoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 1613-1622.	4.9	9
23	Retinal Neurons Curb Inflammation and Enhance Revascularization in Ischemic Retinopathies via Proteinase-Activated Receptor-2. American Journal of Pathology, 2015, 185, 581-595.	3.8	25
24	Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis. Nature Medicine, 2014, 20, 1165-1173.	30.7	65
25	Lymphocyte-derived microparticles induce apoptosis of airway epithelial cells through activation of p38 MAPK and production of arachidonic acid. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1113-1127.	4.9	21
26	Antiâ€proliferative and antiâ€ŧumour effects of lymphocyteâ€derived microparticles are neither species―nor tumourâ€ŧype specific. Journal of Extracellular Vesicles, 2014, 3, .	12.2	13
27	Lymphocyte-derived microparticles induce bronchial epithelial cells' pro-inflammatory cytokine production and apoptosis. Molecular Immunology, 2013, 55, 220-230.	2.2	16
28	p75 Neurotrophin Receptor Participates in the Choroidal Antiangiogenic and Apoptotic Effects of T-Lymphocyte–Derived Microparticles. , 2013, 54, 6084.		17
29	Fatty Acid Receptor Gpr40 Mediates Neuromicrovascular Degeneration Induced by Transarachidonic Acids in Rodents. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 954-961.	2.4	32
30	Microglia and Interleukin-1β in Ischemic Retinopathy Elicit Microvascular Degeneration Through Neuronal Semaphorin-3A. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1881-1891.	2.4	127
31	Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R941-R949.	1.8	28
32	Understanding ischemic retinopathies: emerging concepts from oxygen-induced retinopathy. Documenta Ophthalmologica, 2010, 120, 51-60.	2.2	66
33	Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells. Cancer Biology and Therapy, 2010, 10, 448-456.	3.4	37
34	Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. Journal of Clinical Investigation, 2010, 120, 3022-3032.	8.2	213
35	CD36 plays an important role in the clearance of oxLDL and associated age-dependent sub-retinal deposits. Aging, 2010, 2, 981-989.	3.1	72
36	Hypoxia Up-regulates CD36 Expression and Function via Hypoxia-inducible Factor-1- and Phosphatidylinositol 3-Kinase-dependent Mechanisms. Journal of Biological Chemistry, 2009, 284, 26695-26707.	3.4	67

PIERRE HARDY

#	Article	IF	CITATIONS
37	The Role of Lysophosphatidic Acid Receptor (LPA ₁) in the Oxygen-Induced Retinal Ganglion Cell Degeneration. , 2009, 50, 1290.		30
38	The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nature Medicine, 2008, 14, 1067-1076.	30.7	317
39	trans-Arachidonic acids induce a heme oxygenase-dependent vasorelaxation of cerebral microvasculature. Free Radical Biology and Medicine, 2008, 44, 815-825.	2.9	23
40	Interleukin-1 and Ischemic Brain Injury in the Newborn: Development of a Small Molecule Inhibitor of IL-1 Receptor. Seminars in Perinatology, 2008, 32, 325-333.	2.5	14
41	Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R467-R476.	1.8	92
42	Genetic Ablation of CD36 Induces Age-Related Corneal Neovascularization. Cornea, 2008, 27, 1037-1041.	1.7	12
43	Lysophosphatidic acid induces endothelial cell death by modulating the redox environment. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1174-R1183.	1.8	41
44	Activation of CD36 Inhibits and Induces Regression of Inflammatory Corneal Neovascularization. Investigative Ophthalmology and Visual Science, 2006, 47, 4356-4364.	3.3	54
45	Hyperoxic Exposure Leads to Nitrative Stress and Ensuing Microvascular Degeneration and Diminished Brain Mass and Function in the Immature Subject. Stroke, 2006, 37, 2807-2815.	2.0	53
46	Hypercapnia prevents neovascularization via nitrative stress. Free Radical Biology and Medicine, 2006, 40, 543-553.	2.9	22
47	Dominant Role for Calpain in Thromboxane-Induced Neuromicrovascular Endothelial Cytotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 618-627.	2.5	19
48	Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1–dependent microvascular degeneration. Nature Medicine, 2005, 11, 1339-1345.	30.7	89
49	New insights into the retinal circulation: Inflammatory lipid mediators in ischemic retinopathy. Prostaglandins Leukotrienes and Essential Fatty Acids, 2005, 72, 301-325.	2.2	88
50	Inflammatory lipid mediators in ischemic retinopathy. Pharmacological Reports, 2005, 57 Suppl, 169-90.	3.3	14
51	Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy. Free Radical Biology and Medicine, 2004, 37, 1885-1894.	2.9	64
52	PGE(2)-mediated eNOS induction in prolonged hypercapnia. Investigative Ophthalmology and Visual Science, 2002, 43, 1558-66.	3.3	18
53	Characterization of PGE2 receptors in fetal and newborn ductus arteriosus in the pig. Seminars in Perinatology, 2001, 25, 70-75.	2.5	8
54	Preservation of neural function in the perinate by high PGE ₂ levels acting via EP ₂ receptors. Journal of Applied Physiology, 2000, 89, 777-784.	2.5	13

PIERRE HARDY

#	Article	IF	CITATIONS
55	Prolonged Hypercapnia-Evoked Cerebral Hyperemia via K ⁺ Channel– and Prostaglandin E ₂ –Dependent Endothelial Nitric Oxide Synthase Induction. Circulation Research, 2000, 87, 1149-1156.	4.5	54
56	Developmentally Increased Cerebrovascular NO in Newborn Pigs Curtails Cerebral Blood Flow Autoregulation. Pediatric Research, 1999, 46, 375-375.	2.3	19
57	Developmental Changes in Prostaglandin E ₂ Receptor Subtypes in Porcine Ductus Arteriosus. Circulation, 1999, 100, 1751-1756.	1.6	44
58	Expression of cyclooxygenases in ductus arteriosus of fetal and newborn pigs. American Journal of Obstetrics and Gynecology, 1998, 179, 1618-1626.	1.3	55
59	A Major Role for Prostacyclin in Nitric Oxide–Induced Ocular Vasorelaxation in the Piglet. Circulation Research, 1998, 83, 721-729.	4.5	72
60	Formation of Isoprostane-like Compounds (Neuroprostanes) in Vivo from Docosahexaenoic Acid. Journal of Biological Chemistry, 1998, 273, 13605-13612.	3.4	377
61	A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F2α on retinal vessels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1406-R1416.	1.8	53
62	CONTROL OF CEREBRAL AND OCULAR BLOOD FLOW AUTOREGULATION IN NEONATES. Pediatric Clinics of North America, 1997, 44, 137-152.	1.8	40
63	Prevention of Postasphyxia Electroretinal Dysfunction with a Pyridoxal Hydrazone. Free Radical Biology and Medicine, 1997, 22, 11-16.	2.9	20
64	Light Induces Peroxidation in Retina by Activating Prostaglandin G/H Synthase. Free Radical Biology and Medicine, 1997, 23, 885-897.	2.9	27
65	Increased Nitric Oxide Synthesis and Action Preclude Choroidal Vasoconstriction to Hyperoxia in Newborn Pigs. Circulation Research, 1996, 79, 504-511.	4.5	60
66	Nitric Oxide in Retinal and Choroidal Blood Flow Autoregulation in Newborn Pigs: Interactions with Prostaglandins. Pediatric Research, 1996, 39, 487-493.	2.3	56
67	Prostaglandin C/H Synthase-2 Is a Major Contributor of Brain Prostaglandins in the Newborn. Journal of Biological Chemistry, 1995, 270, 24615-24620.	3.4	125
68	Mechanisms of the biphasic effects of peroxides on the retinal vasculature of newborn and adult pigs. Experimental Eye Research, 1995, 61, 285-292.	2.6	23