Mathias Francois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7107550/publications.pdf

Version: 2024-02-01

70 papers

3,528 citations

36 h-index 56 g-index

81 all docs

81 docs citations

81 times ranked 4711 citing authors

#	Article	IF	CITATIONS
1	<i>Pkd1</i> and <i>Wnt5a</i> genetically interact to control lymphatic vascular morphogenesis in mice. Developmental Dynamics, 2022, 251, 336-349.	0.8	3
2	Non–beta blocker enantiomers of propranolol and atenolol inhibit vasculogenesis in infantile hemangioma. Journal of Clinical Investigation, 2022, 132, .	3.9	26
3	Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nature Communications, 2021, 12, 2564.	5.8	26
4	When form meets function: the cells and signals that shape the lymphatic vasculature during development. Development (Cambridge), 2021, 148, .	1.2	14
5	Assessment of heterogeneity in collective endothelial cell behavior with multicolor clonal cell tracking to predict arteriovenous remodeling. Cell Reports, 2021, 36, 109395.	2.9	2
6	A dominant-negative SOX18 mutant disrupts multiple regulatory layers essential to transcription factor activity. Nucleic Acids Research, 2021, 49, 10931-10955.	6.5	7
7	Modulating transcription factor activity: Interfering with protein-protein interaction networks. Seminars in Cell and Developmental Biology, 2020, 99, 12-19.	2.3	41
8	Deep conservation of the enhancer regulatory code in animals. Science, 2020, 370, .	6.0	89
9	Ectopic expression of SOX18 in Basal cell carcinoma negatively regulates tumour progression. Journal of Dermatological Science, 2020, 98, 179-185.	1.0	3
10	<scp>MAFB</scp> modulates the maturation of lymphatic vascular networks in mice. Developmental Dynamics, 2020, 249, 1201-1216.	0.8	10
11	Oncogenic Herpesvirus Engages Endothelial Transcription Factors SOX18 and PROX1 to Increase Viral Genome Copies and Virus Production. Cancer Research, 2020, 80, 3116-3129.	0.4	17
12	Uterine SOX17: a key player in human endometrial receptivity and embryo implantation. Scientific Reports, 2019, 9, 15495.	1.6	21
13	Vegfc/d-dependent regulation of the lymphatic vasculature during cardiac regeneration is influenced by injury context. Npj Regenerative Medicine, 2019, 4, 18.	2.5	37
14	Endovascular progenitors infiltrate melanomas and differentiate towards a variety of vascular beds promoting tumor metastasis. Nature Communications, 2019, 10, 18.	5.8	41
15	R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma. ELife, 2019, 8 , .	2.8	35
16	Functional domain analysis of SOX18 transcription factor using a single-chain variable fragment-based approach. MAbs, 2018, 10, 596-606.	2.6	7
17	HomodimerizationÂregulates an endothelial specific signature of the SOX18 transcription factor. Nucleic Acids Research, 2018, 46, 11381-11395.	6.5	21
18	A blood capillary plexus-derived population of progenitor cells contributes to genesis of the dermal lymphatic vasculature during embryonic development. Development (Cambridge), 2018, 145, .	1.2	64

#	Article	IF	CITATIONS
19	Tmem2 Regulates Embryonic Vegf Signaling by Controlling Hyaluronic Acid Turnover. Developmental Cell, 2017, 40, 123-136.	3.1	63
20	Small-Molecule Inhibitors of the SOX18 Transcription Factor. Cell Chemical Biology, 2017, 24, 346-359.	2.5	42
21	Tmem2 Regulates Embryonic Vegf Signaling by Controlling Hyaluronic Acid Turnover. Developmental Cell, 2017, 40, 421.	3.1	12
22	Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nature Neuroscience, 2017, 20, 774-783.	7.1	91
23	Functional Definition of Progenitors Versus Mature Endothelial Cells Reveals Key SoxF-Dependent Differentiation Process. Circulation, 2017, 135, 786-805.	1.6	122
24	SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development (Cambridge), 2017, 144, 2629-2639.	1.2	43
25	Dominant-negative <i>Sox18</i> function inhibits dermal papilla maturation and differentiation in all murine hair types. Development (Cambridge), 2017, 144, 1887-1895.	1.2	34
26	Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. ELife, 2017, 6, .	2.8	50
27	STAT5 Activation in the Dermal Papilla IsÂlmportant for Hair Follicle Growth PhaseÂlnduction. Journal of Investigative Dermatology, 2016, 136, 1781-1791.	0.3	43
28	Structure and decoy-mediated inhibition of the SOX18/ <i>Prox1</i> -DNA interaction. Nucleic Acids Research, 2016, 44, 3922-3935.	6.5	44
29	Vegfc Regulates Bipotential Precursor Division and Prox1 Expression to Promote Lymphatic Identity in Zebrafish. Cell Reports, 2015, 13, 1828-1841.	2.9	118
30	Hypotrichosisâ€lymphedemaâ€telangiectasiaâ€renal defect associated with a truncating mutation in the <scp>SOX18</scp> gene. Clinical Genetics, 2015, 87, 378-382.	1.0	33
31	Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles. Cell Regeneration, 2015, 4, 4:2.	1.1	52
32	<i>mafba</i> is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes and Development, 2015, 29, 1618-1630.	2.7	63
33	Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis. Oncoscience, 2015, 2, 635-645.	0.9	22
34	Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1. Oncotarget, 2015, 6, 7438-7453.	0.8	41
35	The Schlemm's canal is a VEGF-C/VEGFR-3–responsive lymphatic-like vessel. Journal of Clinical Investigation, 2014, 124, 3975-3986.	3.9	179
36	Lymphatic vascular specification and its modulation during embryonic development. Microvascular Research, 2014, 96, 3-9.	1.1	3

3

#	Article	IF	Citations
37	Arap3 is dysregulated in a mouse model of hypotrichosis–lymphedema–telangiectasia and regulates lymphatic vascular development. Human Molecular Genetics, 2014, 23, 1286-1297.	1.4	36
38	Pkd1 Regulates Lymphatic Vascular Morphogenesis during Development. Cell Reports, 2014, 7, 623-633.	2.9	77
39	Control of retinoid levels by CYP26B1 is important for lymphatic vascular development in the mouse embryo. Developmental Biology, 2014, 386, 25-33.	0.9	41
40	VEGFD regulates blood vascular development by modulating SOX18 activity. Blood, 2014, 123, 1102-1112.	0.6	65
41	Abstract 4950: Hypercholesterolemia promotes prostate cancer PC-3 metastases in orthotopic xenograft mice. , 2014, , .		0
42	Sox18 Genetically Interacts With VegfC to Regulate Lymphangiogenesis in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1238-1247.	1.1	38
43	PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis. Oncotarget, 2013, 4, 1844-1855.	0.8	42
44	Studies on Axenfeld-Rieger syndrome patients and mice reveal Foxc1's role in corneal neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1818-1819.	3.3	3
45	Possible Genetic Predisposition to Lymphedema after Breast Cancer. Lymphatic Research and Biology, 2012, 10, 2-13.	0.5	98
46	Cytoplasmic Plaque Formation in Hemidesmosome Development Is Dependent on SoxF Transcription Factor Function. PLoS ONE, 2012, 7, e43857.	1.1	8
47	Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary. PLoS ONE, 2012, 7, e52620.	1.1	46
48	Tumor Lymphangiogenesis as a Potential Therapeutic Target. Journal of Oncology, 2012, 2012, 1-23.	0.6	74
49	Genetic Ablation of SOX18 Function Suppresses Tumor Lymphangiogenesis and Metastasis of Melanoma in Mice. Cancer Research, 2012, 72, 3105-3114.	0.4	56
50	Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice. Developmental Biology, 2012, 364, 89-98.	0.9	78
51	The Transcriptional Control of Lymphatic Vascular Development. Physiology, 2011, 26, 146-155.	1.6	49
52	Sox Factors Transcriptionally Regulate ROBO4 Gene Expression in Developing Vasculature in Zebrafish. Journal of Biological Chemistry, 2011, 286, 30740-30747.	1.6	15
53	SoxF genes: Key players in the development of the cardio-vascular system. International Journal of Biochemistry and Cell Biology, 2010, 42, 445-448.	1.2	137
54	Vascular defects in a mouse model of hypotrichosis-lymphedema-telangiectasia syndrome indicate a role for SOX18 in blood vessel maturation. Human Molecular Genetics, 2009, 18, 2839-2850.	1.4	48

#	Article	IF	CITATIONS
55	<i>Sox7</i> and <i>Sox17</i> are strain-specific modifiers of the lymphangiogenic defects caused by <i>Sox18</i> dysfunction in mice. Development (Cambridge), 2009, 136, 2385-2391.	1.2	82
56	Sox18 induces development of the lymphatic vasculature in mice. Nature, 2008, 456, 643-647.	13.7	483
57	A high interleukin 1 receptor antagonist/IL-1beta ratio occurs naturally in knee osteoarthritis. Journal of Rheumatology, 2008, 35, 1650-4.	1.0	31
58	Pharmacologic induction of heme oxygenase 1 reduces acute inflammatory arthritis in mice. Arthritis and Rheumatism, 2007, 56, 2585-2594.	6.7	65
59	Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine, 2006, 73, 29-36.	0.8	87
60	Activation of the peroxisome proliferator–activated receptor α pathway potentiates interleukin-1 receptor antagonist production in cytokine-treated chondrocytes. Arthritis and Rheumatism, 2006, 54, 1233-1245.	6.7	40
61	Modulation of proteoglycan production by cyclic tensile stretch in intervertebral disc cells through a post-translational mechanism. Biorheology, 2006, 43, 303-10.	1.2	7
62	Rosiglitazone induces interleukin-1 receptor antagonist in interleukin-1?-stimulated rat synovial fibroblasts via a peroxisome proliferator-activated receptor ?/?-dependent mechanism. Arthritis and Rheumatism, 2005, 52, 759-769.	6.7	23
63	Peroxisome proliferator-activated receptor gamma and its ligands in controlling interleukin-1beta target gene expression: A confusing story. Drug News and Perspectives, 2005, 18, 257.	1.9	1
64	Dual effects of 17Â-oestradiol on interleukin 1Â-induced proteoglycan degradation in chondrocytes. Annals of the Rheumatic Diseases, 2004, 63, 191-199.	0.5	46
65	Peroxisome Proliferator-activated Receptor-Î ³ Down-regulates Chondrocyte Matrix Metalloproteinase-1 via a Novel Composite Element. Journal of Biological Chemistry, 2004, 279, 28411-28418.	1.6	46
66	15-Deoxy-Î"12,14-prostaglandin J2inhibits IL-1β-induced IKK enzymatic activity and IÎ $^{\rm B}$ Î $^{\pm}$ degradation in rat chondrocytes through a PPARÎ $^{\rm 3}$ -independent pathway. FEBS Letters, 2004, 572, 33-40.	1.3	31
67	Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cells through production of nitrite oxide. Journal of Cellular Biochemistry, 2003, 90, 148-157.	1.2	69
68	Induction of Necrosis in Human Neutrophils by Shigella flexneri Requires Type III Secretion, IpaB and IpaC Invasins, and Actin Polymerization. Infection and Immunity, 2000, 68, 1289-1296.	1.0	63
69	Transcriptional Modulation of Tumour Induced Angiogenesis. , 0, , .		0
70	Heterogeneity in Collective Endothelial Cell Behavior is a Driver of Arterio-Venous Remodeling. SSRN Electronic Journal, 0, , .	0.4	0