
Lilian Cristina Russo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7107288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleophosmin Protein Dephosphorylation by DUSP3 Is a Fine-Tuning Regulator of p53 Signaling to Maintain Genomic Stability. Frontiers in Cell and Developmental Biology, 2021, 9, 624933.	1.8	7
2	The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling. Journal of Biological Chemistry, 2021, 297, 101041.	1.6	61
3	UV Radiation-induced Impairment of Cellular Morphology and Motility is Enhanced by DUSP3/VHR Loss and FAK Activation. Cell Biochemistry and Biophysics, 2021, 79, 261-269.	0.9	3
4	Overactivated Cdc42 acts through Cdc42EP3/Borg2 and NCK to trigger DNA damage response signaling and sensitize cells to DNA-damaging agents. Experimental Cell Research, 2020, 395, 112206.	1.2	9
5	DUSP3 maintains genomic stability and cell proliferation by modulating NER pathway and cell cycle regulatory proteins. Cell Cycle, 2020, 19, 1545-1561.	1.3	5
6	A metal-free blue chromophore derived from plant pigments. Science Advances, 2020, 6, eaaz0421.	4.7	24
7	Functionalized nanoparticles as adjuvant to increase the cytotoxicity of metallodrugs toward tumor cells. New Journal of Chemistry, 2019, 43, 386-398.	1.4	10
8	Intracellular Peptides in Cell Biology and Pharmacology. Biomolecules, 2019, 9, 150.	1.8	34
9	Revisiting the roles of VHR/DUSP3 phosphatase in human diseases. Clinics, 2018, 73, e466s.	0.6	11
10	Assessing the Roles of Rho GTPases in Cell DNA Repair by the Nucleotide Excision Repair Pathway. Methods in Molecular Biology, 2018, 1821, 319-338.	0.4	6
11	DUSP3/VHR: A Druggable Dual Phosphatase for Human Diseases. Reviews of Physiology, Biochemistry and Pharmacology, 2018, 176, 1-35.	0.9	9
12	A Cyclin D2-derived peptide acts on specific cell cycle phases by activating ERK1/2 to cause the death of breast cancer cells. Journal of Proteomics, 2017, 151, 24-32.	1.2	21
13	Loss of DUSP3 activity radiosensitizes human tumor cell lines via attenuation of DNA repair pathways. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1879-1894.	1.1	11
14	Interferon-gamma activity is potentiated by an intracellular peptide derived from the human 19S ATPase regulatory subunit 4 of the proteasome. Journal of Proteomics, 2017, 151, 74-82.	1.2	15
15	A Novel Intracellular Peptide Derived from G1/S Cyclin D2 Induces Cell Death. Journal of Biological Chemistry, 2014, 289, 16711-16726.	1.6	42
16	AGH is a new hemoglobin alpha-chain fragment with antinociceptive activity. Peptides, 2013, 48, 10-20.	1.2	12
17	Natural intracellular peptides can modulate the interactions of mouse brain proteins and thimet oligopeptidase with 14â€3â€3îµ and calmodulin. Proteomics, 2012, 12, 2641-2655.	1.3	38
18	Inhibition of thimet oligopeptidase by siRNA alters specific intracellular peptides and potentiates isoproterenol signal transduction. FEBS Letters, 2012, 586, 3287-3292.	1.3	23

#	Article	IF	CITATIONS
19	Identification of intracellular peptides in rat adipose tissue: Insights into insulin resistance. Proteomics, 2012, 12, 2668-2681.	1.3	44
20	Similar Intracellular Peptide Profile of TAP1/β2 Microglobulin Double-Knockout Mice and C57BL/6 Wild-Type Mice as Revealed by Peptidomic Analysis. AAPS Journal, 2010, 12, 608-616.	2.2	18
21	Analysis of Intracellular Substrates and Products of Thimet Oligopeptidase in Human Embryonic Kidney 293 Cells. Journal of Biological Chemistry, 2009, 284, 14105-14116.	1.6	64
22	Interaction with calmodulin is important for the secretion of thimet oligopeptidase following stimulation. FEBS Journal, 2009, 276, 4358-4371.	2.2	10