List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7106925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology, 2003, 41, 1078-1083.	2.8	1,072
2	Myoblast transplantation for heart failure. Lancet, The, 2001, 357, 279-280.	13.7	1,044
3	The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial. Circulation, 2008, 117, 1189-1200.	1.6	878
4	Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7808-7811.	7.1	466
5	Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report: Figure 1. European Heart Journal, 2015, 36, 2011-2017.	2.2	383
6	Transplantation of Human Embryonic StemÂCell–Derived Cardiovascular Progenitors for SevereÂlschemic LeftÂVentricular Dysfunction. Journal of the American College of Cardiology, 2018, 71, 429-438.	2.8	336
7	A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. Journal of Clinical Investigation, 2010, 120, 1125-1139.	8.2	287
8	Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet, The, 2003, 361, 491-492.	13.7	265
9	Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering. Acta Biomaterialia, 2017, 48, 20-40.	8.3	230
10	Cell therapy trials for heart regeneration — lessons learned and future directions. Nature Reviews Cardiology, 2018, 15, 659-671.	13.7	200
11	Intra-Cardiac Release of Extracellular Vesicles Shapes Inflammation Following Myocardial Infarction. Circulation Research, 2018, 123, 100-106.	4.5	181
12	Cardiovascular progenitor–derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. Journal of Heart and Lung Transplantation, 2016, 35, 795-807.	0.6	161
13	Cardiac cell therapy: Lessons from clinical trials. Journal of Molecular and Cellular Cardiology, 2011, 50, 258-265.	1.9	153
14	Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation, 2002, 106, 1131-6.	1.6	144
15	Effect of Levosimendan on Low Cardiac Output Syndrome in Patients With Low Ejection Fraction Undergoing Coronary Artery Bypass Grafting With Cardiopulmonary Bypass. JAMA - Journal of the American Medical Association, 2017, 318, 548.	7.4	143
16	Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. European Heart Journal, 2015, 36, 743-750.	2.2	137
17	Acellular therapeutic approach for heart failure: inÂvitro production of extracellular vesicles from human cardiovascular progenitors. European Heart Journal, 2018, 39, 1835-1847.	2.2	137
18	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	2.2	133

#	Article	IF	CITATIONS
19	Skeletal Myoblasts as a Therapeutic Agent. Progress in Cardiovascular Diseases, 2007, 50, 7-17.	3.1	129
20	A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation. Nature Communications, 2017, 8, 400.	12.8	123
21	Stem Cell Therapy for Heart Failure. Circulation, 2009, 119, 2735-2740.	1.6	122
22	Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 2008, 10, 1065-1072.	7.1	119
23	Cell Delivery: Intramyocardial Injections or Epicardial Deposition? A Head-to-Head Comparison. Annals of Thoracic Surgery, 2009, 87, 1196-1203.	1.3	112
24	Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Science Translational Medicine, 2020, 12, .	12.4	112
25	Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. Journal of Experimental Medicine, 2016, 213, 1353-1374.	8.5	97
26	ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 2019, 115, 488-500.	3.8	90
27	Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. Journal of Heart and Lung Transplantation, 2015, 34, 1198-1207.	0.6	80
28	Recommendations for Successful Training on Methods of Delivery of Biologics for Cardiac Regeneration. JACC: Cardiovascular Interventions, 2010, 3, 265-275.	2.9	71
29	Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials, 2016, 80, 157-168.	11.4	65
30	Cell-based Therapy for Heart Disease: A Clinically Oriented Perspective. Molecular Therapy, 2009, 17, 758-766.	8.2	63
31	Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy. ACS Nano, 2018, 12, 9800-9814.	14.6	60
32	Skeletal Myoblasts Preserve Remote Matrix Architecture and Global Function When Implanted Early or Late After Coronary Ligation Into Infarcted or Remote Myocardium. Circulation, 2008, 118, S130-S137.	1.6	57
33	Extracellular vesicles from human cardiovascular progenitors trigger a reparative immune response in infarcted hearts. Cardiovascular Research, 2021, 117, 292-307.	3.8	57
34	Clinical Translation of Pluripotent Stem Cell Therapies: Challenges and Considerations. Cell Stem Cell, 2019, 25, 594-606.	11.1	53
35	A polydioxanone electrospun valved patch to replace the right ventricular outflow tract in a growing lamb model. Biomaterials, 2010, 31, 4056-4063.	11.4	50
36	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	3.8	44

#	Article	IF	CITATIONS
37	Current Status and Future Prospects for Cell Transplantation to Prevent Congestive Heart Failure. Seminars in Thoracic and Cardiovascular Surgery, 2008, 20, 131-137.	0.6	43
38	Development of extracellular vesicle-based medicinal products: A position paper of the group "Extracellular Vesicle translatiOn to clinicaL perspectiVEs – EVOLVE France― Advanced Drug Delivery Reviews, 2021, 179, 114001.	13.7	42
39	Basic and Translational Research in Cardiac Repair and Regeneration. Journal of the American College of Cardiology, 2021, 78, 2092-2105.	2.8	42
40	Can Magnetic Targeting of Magnetically Labeled Circulating Cells Optimize Intramyocardial Cell Retention?. Cell Transplantation, 2012, 21, 679-691.	2.5	41
41	CHIR99021 and fibroblast growth factor 1 enhance the regenerative potency of human cardiac muscle patch after myocardial infarction in mice. Journal of Molecular and Cellular Cardiology, 2020, 141, 1-10.	1.9	40
42	Cell transplantation for the treatment of heart failure. Seminars in Thoracic and Cardiovascular Surgery, 2002, 14, 157-166.	0.6	38
43	Fabrication of cardiac patch by using electrospun collagen fibers. Microelectronic Engineering, 2015, 144, 46-50.	2.4	37
44	Extracellular Vesicles and Biomaterial Design: New Therapies for Cardiac Repair. Trends in Molecular Medicine, 2021, 27, 231-247.	6.7	31
45	HEMO ₂ life as a protective additive to Celsior solution for static storage of donor hearts prior to transplantation. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 717-722.	2.8	27
46	The Evolution of the Stem Cell Theory for Heart Failure. EBioMedicine, 2015, 2, 1871-1879.	6.1	24
47	Polymer-Based Reconstruction of the Inferior Vena Cava in Rat: Stem Cells or RGD Peptide?. Tissue Engineering - Part A, 2015, 21, 1552-1564.	3.1	21
48	Insights into therapeutic products, preclinical research models, and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC Working Group on Cardiovascular Regenerative and Reparative Medicine. Cardiovascular Research, 2021, 117, 1428-1433.	3.8	20
49	Stem cell therapy for chronic heart failure. Lessons from a 15-year experience. Comptes Rendus - Biologies, 2011, 334, 489-496.	0.2	19
50	Attrition of the cardiothoracic surgeon-scientist: Definition of the problem and remedial strategies. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 504-508.	0.8	18
51	In vitro controlled release of extracellular vesicles for cardiac repair from poly(glycerol sebacate) acrylate-based polymers. Acta Biomaterialia, 2020, 115, 92-103.	8.3	18
52	Cardiac cell therapy: Current status, challenges and perspectives. Archives of Cardiovascular Diseases, 2020, 113, 285-292.	1.6	18
53	Rationale and design of the multicenter randomized trial investigating the effects of levosimendan pretreatment in patients with low ejection fraction (â‰ 4 0 %) undergoing CABG with cardiopulmonary bypass (LICORN study). Journal of Cardiothoracic Surgery, 2016, 11, 127.	1.1	12
54	Inhibition of factor IXa by the pegnivacogin system during cardiopulmonary bypass: a potential substitute for heparin. A study in baboons. European Journal of Cardio-thoracic Surgery, 2016, 49, 682-689.	1.4	11

#	Article	IF	CITATIONS
55	Cardiac Cell Therapy Trials: Chronic Myocardial Infarction and Congestive Heart Failure. Journal of Cardiovascular Translational Research, 2008, 1, 201-206.	2.4	10
56	Extracellular vesicles fail to trigger the generation of new cardiomyocytes in chronically infarcted hearts. Theranostics, 2021, 11, 10114-10124.	10.0	10
57	Cell therapy for peripheral arterial disease. Current Opinion in Molecular Therapeutics, 2010, 12, 538-45.	2.8	10
58	Comparative Analysis of Methods to Induce Myocardial Infarction in a Closed-Chest Rabbit Model. BioMed Research International, 2015, 2015, 1-9.	1.9	9
59	Stem cells in the management of advanced heart failure. Current Opinion in Cardiology, 2015, 30, 179-185.	1.8	9
60	Long-Term Engraftment (16 Years) of Myoblasts in a Human Infarcted Heart. Stem Cells Translational Medicine, 2018, 7, 705-708.	3.3	9
61	Cell Therapy With Human ESC-Derived Cardiac Cells: Clinical Perspectives. Frontiers in Bioengineering and Biotechnology, 2020, 8, 601560.	4.1	9
62	The future of stem cells: Should we keep the "stem―and skip the "cells�. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 345-349.	0.8	8
63	Multiple reoperations on the aortic valve: outcomes and implications for future potential valve-in-valve strategyâ€. European Journal of Cardio-thoracic Surgery, 2018, 53, 1251-1257.	1.4	8
64	Effect of severe acidosis on vasoactive effects of epinephrine and norepinephrine in human distal mammary artery. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1698-1705.	0.8	7
65	Stem cell–derived exosomes and the failing heart: Small cause, big effect. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1089-1092.	0.8	7
66	Extracellular vesicles can be processed by electrospinning without loss of structure or function. Materials Letters, 2021, 282, 128671.	2.6	7
67	Challenging the Cardiac Differentiation of Bone Marrow Cells: A Clinical Perspective. Molecular Therapy, 2008, 16, 1000-1001.	8.2	6
68	Stem cells for the treatment of heart failure. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140373.	4.0	6
69	Transatlantic Editorial: Attrition of the Cardiothoracic Surgeon-Scientist: Definition ofÂtheÂProblem and Remedial Strategies. Annals of Thoracic Surgery, 2019, 108, 315-318.	1.3	6
70	Evaluation of a new model of hind limb ischemia in rabbits. Journal of Vascular Surgery, 2018, 68, 849-857.	1.1	5
71	Ten-year follow-up of unreplaced Valsalva sinuses after aortic valve replacement in bicuspid aortic valve disease. Archives of Cardiovascular Diseases, 2019, 112, 305-313.	1.6	4
72	Experimental Evaluation of Endovascular Fenestration Scissors in an Ovine Model of Aortic Dissection. European Journal of Vascular and Endovascular Surgery, 2018, 56, 373-380.	1.5	3

#	Article	IF	CITATIONS
73	Cellular Therapy in Thoracic and Cardiovascular Disease. Annals of Thoracic Surgery, 2007, 84, 339-342.	1.3	2
74	How Close Are We to Using Stem Cells in Routine Cardiac Therapy?. Canadian Journal of Cardiology, 2014, 30, 1265-1269.	1.7	2
75	CD133+ cells: How could they have an IMPACT?. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 1589-1591.	0.8	2
76	Editorial Comment: Adenosine in heart transplants: have we finally found the good indication?. European Journal of Cardio-thoracic Surgery, 2013, 43, 1209-1210.	1.4	0
77	Do not throw the baby with the water bath!. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 557.	0.8	0
78	Building a bioartificial heart: A 3-song saga. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 744-747.	0.8	0
79	Will cardiac surgeons even turn pumpkins into carriages?. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1647-1649.	0.8	0
80	Platelet vesicles help cardiac stem cells engraft. Nature Biomedical Engineering, 2018, 2, 4-5.	22.5	0
81	Editorial: Bioengineering and Biotechnology Approaches in Cardiovascular Sciences. Frontiers in Bioengineering and Biotechnology, 2021, 9, 746435.	4.1	0
82	Skeletal Myoblast Transplantation for Ischemic Heart Failure. , 2008, , 189-202.		0
83	Vésicules extra cellulaires : nouveaux agents thérapeutiques pour la réparation cardiaque ?. Bulletin De L'Academie Nationale De Medecine, 2018, 202, 755-769. 	0.0	0
84	Dynamic contrast enhanced – MRI efficiency in detecting embolization-induced perfusion defects in a rabbit model of critical-limb-ischemia. Magnetic Resonance Imaging, 2022, 87, 88-96.	1.8	0