List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7106299/publications.pdf Version: 2024-02-01

		53660	106150
221	6,456	45	65
papers	citations	h-index	g-index
223	223	223	3818
all docs	docs citations	times ranked	citing authors

#	ŧ	Article	IF	CITATIONS
1		Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga) Tj ETQq1 1	0,784314 1.8	rgBT /Over ⊉28
2	2	Phylogenetic Relationships of Eurasian Pines (Pinus, Pinaceae) Based on Chloroplast rbcL, matK, rpl20-rps18 Spacer, and trnV Intron Sequences. American Journal of Botany, 1999, 86, 1742.	0.8	193
3	3	Molecular phytogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theoretical and Applied Genetics, 1995, 91, 1222-1236.	1.8	189
4	ŀ	Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. American Journal of Botany, 1998, 85, 629-636.	0.8	120
5	5	Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based onmatK gene,chlL gene,trnL-trnF IGS region, andtrnL intron sequences. American Journal of Botany, 2000, 87, 1480-1488.	0.8	115
6	5	Estimation of gene flow in the tropical-rainforest treeNeobalanocarpus heimii(Dipterocarpaceae), inferred from paternity analysis. Molecular Ecology, 2000, 9, 1843-1852.	2.0	114
7	,	DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat Genes and Genetic Systems, 1996, 71, 145-149.	0.2	107
8	3	The population demography of <i><scp>B</scp>etula maximowicziana</i> , a coolâ€temperate tree species in <scp>J</scp> apan, in relation to the last glacial period: its admixtureâ€like genetic structure is the result of simple population splitting not admixing. Molecular Ecology, 2015, 24, 1403-1418.	2.0	101
9)	Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genetics and Genomes, 2011, 7, 747-758.	0.6	100
1	.0	18S rRNA Gene Variation among Common Airborne Fungi, and Development of Specific Oligonucleotide Probes for the Detection of Fungal Isolates. Applied and Environmental Microbiology, 2003, 69, 5389-5397.	1.4	92
1	.1	Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late-Quaternary. Heredity, 1997, 78, 241-251.	1.2	91
1	2	Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP of PCR-amplified chloroplast genes. Theoretical and Applied Genetics, 1996, 93-93, 22-29.	1.8	87
1	.3	Genetic Diversity and Outcrossing Rate between Undisturbed and Selectively Logged Forests ofShorea curtisii(Dipterocarpaceae) Using Microsatellite DNA Analysis. International Journal of Plant Sciences, 2002, 163, 151-158.	0.6	86
1	.4	Development and polymorphism of simple sequence repeat DNA markers for Shorea curtisii and other Dipterocarpaceae species. Heredity, 1998, 81, 422-428.	1.2	83
1	.5	Sequence-tagged-sites (STSs) of cDNA clones in Cryptomeria japonica and their evaluation as molecular markers in conifers. Theoretical and Applied Genetics, 1997, 94, 764-772.	1.8	78
1	.6	Genome Scan to Detect Genetic Structure and Adaptive Genes of Natural Populations of Cryptomeria japonica. Genetics, 2007, 176, 2393-2403.	1.2	77
1	.7	Microsatellite markers reveal high allelic variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period. Journal of Plant Research, 2005, 118, 83-90.	1.2	75
1	.8	DNA Variation in a Conifer,Cryptomeria japonica(Cupressaceae sensu lato). Genetics, 2003, 164, 1547-1559.	1.2	71

#	Article	IF	CITATIONS
19	Selfing and inbreeding depression in seeds and seedlings of Neobalanocarpus heimii (Dipterocarpaceae). Journal of Plant Research, 2005, 118, 423-430.	1.2	70
20	Density-dependent selfing and its effects on seed performance in a tropical canopy tree species, Shorea acuminata (Dipterocarpaceae). Forest Ecology and Management, 2008, 256, 375-383.	1.4	70
21	A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics, 2012, 13, 136.	1.2	69
22	A Consensus Linkage Map for Sugi (Cryptomeria japonica) From Two Pedigrees, Based on Microsatellites and Expressed Sequence Tags. Genetics, 2003, 165, 1551-1568.	1.2	69
23	Expression analysis of ESts derived from the inner bark of Cryptomeria japonica. Plant Molecular Biology, 2000, 43, 451-457.	2.0	68
24	Molecular Phylogeny of Dipetrocarpaceae in Southeast Asia Based on Nucleotide Sequences ofmatK,trnL Intron, andtrnL-trnF Intergenic Spacer Region in Chloroplast DNA. Molecular Phylogenetics and Evolution, 1998, 10, 202-209.	1.2	67
25	Development and characterization of microsatellite markers for Cryptomeria japonica D.Don. Theoretical and Applied Genetics, 2003, 106, 751-758.	1.8	61
26	Linking the gaps between conservation research and conservation management of rare dipterocarps: A case study of Shorea lumutensis. Biological Conservation, 2006, 131, 72-92.	1.9	61
27	Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica. Heredity, 2012, 109, 349-360.	1.2	61
28	A linkage map for sugi (Cryptomeria japonica) based on RFLP, RAPD, and isozyme loci. Theoretical and Applied Genetics, 1995, 90, 835-840.	1.8	58
29	Development and polymorphism of microsatellite markers for Fagus crenata and the closely related species, F. japonica. Theoretical and Applied Genetics, 1999, 99, 11-15.	1.8	58
30	The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don. BMC Genomics, 2012, 13, 95.	1.2	57
31	Chloroplast DNA Inversion Polymorphism in Populations of Abies and Tsuga. Molecular Biology and Evolution, 2000, 17, 1302-1312.	3.5	56
32	Differentiation of Mitochondrial DNA Polymophisms in Populations of Five Japanese Abies Species. Evolution; International Journal of Organic Evolution, 1998, 52, 1031.	1.1	53
33	Population differentiation and gene flow within a metapopulation of a threatened tree, <i>Magnolia stellata</i> (Magnoliaceae). American Journal of Botany, 2007, 94, 128-136.	0.8	53
34	Effects of flowering tree density on the mating system and gene flow in Shorea leprosula (Dipterocarpaceae) in Peninsular Malaysia. Journal of Plant Research, 2007, 120, 413-420.	1.2	53
35	Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica. Annals of Botany, 2014, 114, 1687-1700.	1.4	53
36	Development and characterization of microsatellite markers for Fagus crenata Blume. Molecular Ecology Notes, 2004, 4, 101-103.	1.7	52

#	Article	lF	CITATIONS
37	Variation of paternal contribution in a seed orchard of Cryptomeria japonica determined using microsatellite markers. Canadian Journal of Forest Research, 2004, 34, 1683-1690.	0.8	52
38	AFLP and CAPS linkage maps of Cryptomeria japonica. Theoretical and Applied Genetics, 2000, 100, 825-831.	1.8	50
39	Development and characteristics of microsatellite markers for sugi (Cryptomeria japonica D. Don) derived from microsatellite-enriched libraries. Annals of Forest Science, 2004, 61, 569-575.	0.8	50
40	Cleaved amplified polymorphic sequence markers in sugi, Cryptomeria japonica D. Don, and their locations on a linkage map. Theoretical and Applied Genetics, 2001, 103, 881-895.	1.8	49
41	Phylogeographic study based on intraspecific sequence variation of chloroplast DNA for the conservation of genetic diversity in the Japanese endangered species Primula sieboldii. Biological Conservation, 2004, 120, 211-220.	1.9	49
42	Paternity analysis-based inference of pollen dispersal patterns, male fecundity variation, and influence of flowering tree density and general flowering magnitude in two dipterocarp species. Annals of Botany, 2009, 104, 1421-1434.	1.4	48
43	Isolation and characterization of 20 microsatellite loci for an important tropical tree Shorea leprosula (Dipterocarpaceae) and their applicability to S. parvifolia. Molecular Ecology Notes, 2004, 4, 222-225.	1.7	47
44	Gene flow and mating system in five Cryptomeria japonica D. Don seed orchards as revealed by analysis of microsatellite markers. Tree Genetics and Genomes, 2005, 1, 174-183.	0.6	47
45	Molecular Phylogenetic Position of Japanese Abies (Pinaceae) Based on Chloroplast DNA Sequences. Molecular Phylogenetics and Evolution, 2000, 16, 271-277.	1.2	46
46	Spatial genetic structure among and within populations of Primula sieboldii growing beside separate streams. Molecular Ecology, 2004, 14, 149-157.	2.0	46
47	Genetic Differentiation and Evolutionary Adaptation in <i>Cryptomeria japonica</i> . G3: Genes, Genomes, Genetics, 2014, 4, 2389-2402.	0.8	46
48	Range shifts of Potentilla fruticosa on the Qinghai-Tibetan Plateau during glacial and interglacial periods revealed by chloroplast DNA sequence variation. Heredity, 2010, 104, 534-542.	1.2	45
49	Molecular Evolution of Nuclear Genes in Cupressacea, a Group of Conifer Trees. Molecular Biology and Evolution, 2002, 19, 736-747.	3.5	44
50	Demonstration of Genome-Wide Association Studies for Identifying Markers for Wood Property and Male Strobili Traits in Cryptomeria japonica. PLoS ONE, 2013, 8, e79866.	1.1	44
51	Comparative Analysis of Expressed Sequence Tags of Conifers and Angiosperms Reveals Sequences Specifically Conserved in Conifers. Plant Molecular Biology, 2005, 59, 895-907.	2.0	42
52	Nuclear gene sequences and DNA variation of Cryptomeria japonica samples from the postglacial period. Molecular Ecology, 2003, 12, 859-868.	2.0	41
53	Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags. Genes and Genetic Systems, 2008, 83, 179-187.	0.2	41
54	Genetic Differentiation and Genetic Diversity of Castanopsis (Fagaceae), the Dominant Tree Species in Japanese Broadleaved Evergreen Forests, Revealed by Analysis of EST-Associated Microsatellites. PLoS ONE, 2014, 9, e87429.	1.1	41

#	Article	IF	CITATIONS
55	Segregation distortion for AFLP markers in Cryptomeria japonica Genes and Genetic Systems, 1999, 74, 55-59.	0.2	40
56	Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of <i>Primula sieboldii</i> (Primulaceae). American Journal of Botany, 2006, 93, 226-233.	0.8	40
57	Comparison of the fine-scale genetic structure of three dipterocarp species. Heredity, 2004, 92, 323-328.	1.2	38
58	Molecular database for classifying Shorea species (Dipterocarpaceae) and techniques for checking the legitimacy of timber and wood products. Journal of Plant Research, 2011, 124, 35-48.	1.2	37
59	Genetic structure within a Japanese stone pine (Pinus pumila regel) population on Mt. Aino-dake in central Honshu, Japan. Journal of Plant Research, 1998, 111, 7-15.	1.2	36
60	Genetic diversity of Cryptomeria japonica using co-dominant DNA markers based on sequenced-tagged sites. Theoretical and Applied Genetics, 1999, 98, 396-404.	1.8	36
61	Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markers. Molecular Ecology, 2004, 13, 1241-1250.	2.0	36
62	Regeneration system and genetic diversity of <i>Cryptomeria japonica</i> growing at different altitudes. Canadian Journal of Forest Research, 1997, 27, 447-452.	0.8	35
63	Genetic structure of island populations of Prunus lannesiana var. speciosa revealed by chloroplast DNA, AFLP and nuclear SSR loci analyses. Journal of Plant Research, 2011, 124, 11-23.	1.2	35
64	Genetic structure of geographical marginal populations of Cryptomeriajaponica. Canadian Journal of Forest Research, 1993, 23, 859-863.	0.8	34
65	Half-sib family structure of Fagus crenata saplings in an old-growth beech-dwarf bamboo forest. Molecular Ecology, 2005, 14, 2565-2575.	2.0	34
66	Extended Linkage Disequilibrium in Noncoding Regions in a Conifer, <i>Cryptomeria japonica</i> . Genetics, 2012, 190, 1145-1148.	1.2	34
67	Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, MATK, RPL20-RPS18 spacer, and TRNV intron sequences. American Journal of Botany, 1999, 86, 1742-53.	0.8	34
68	A cline of allozyme variation inAbies mariesii. Journal of Plant Research, 1997, 110, 219-226.	1.2	33
69	A high-density linkage map with 2560 markers and its application for the localization of the male-sterile genes ms3 and ms4 in Cryptomeria japonica D. Don. Tree Genetics and Genomes, 2016, 12, 1.	0.6	33
70	Nuclear and chloroplast <scp>DNA</scp> phylogeography reveals <scp>P</scp> leistocene divergence and subsequent secondary contact of two genetic lineages of the tropical rainforest tree species <i><scp>S</scp>horea leprosula</i> (<scp>D</scp> ipterocarpaceae) in <scp>S</scp> outhâ€ <scp>E</scp> ast <scp>A</scp> sia. Molecular Ecology, 2013, 22, 2264-2279.	2.0	32
71	Genetic diversity and differentiation of Taxodium in the south-eastern United States using cleaved amplified polymorphic sequences. Heredity, 1999, 83, 229-238.	1.2	31
72	Microsatellite Analysis of the Breeding System and Seed Dispersal in Shorea leprosula (Dipterocarpaceae). International Journal of Plant Sciences, 2001, 162, 155-159.	0.6	31

#	Article	IF	CITATIONS
73	Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132182.	1.2	31
74	Detection of quantitative trait loci for juvenile growth, flower bearing and rooting ability based on a linkage map of sugi (Cryptomeria japonica D. Don). Theoretical and Applied Genetics, 1998, 97, 45-50.	1.8	30
75	DIFFERENTIATION OF MITOCHONDRIAL DNA POLYMORPHISMS IN POPULATIONS OF FIVE JAPANESE <i>ABIES</i> SPECIES. Evolution; International Journal of Organic Evolution, 1998, 52, 1031-1042.	1.1	30
76	Gene flow and inbreeding depression inferred from fine-scale genetic structure in an endangered heterostylous perennial, Primula sieboldii. Molecular Ecology, 2005, 14, 983-990.	2.0	30
77	Tracing the origins of stocks of the endangered species Primula sieboldii using nuclear microsatellites and chloroplast DNA. Conservation Genetics, 2008, 9, 1139-1147.	0.8	30
78	Recent distribution changes affect geographic clines in genetic diversity and structure of Pinus densiflora natural populations in Japan. Forest Ecology and Management, 2013, 304, 407-416.	1.4	30
79	Genetic Relationship among East and South Asian Melon (Cucumis melo L.) Revealed by AFLP Analysis. Breeding Science, 2005, 55, 197-206.	0.9	29
80	Genetic diversity and the genetic structure of natural populations of Chamaecyparis obtusa: implications for management and conservation. Heredity, 2007, 99, 161-172.	1.2	28
81	Size-related flowering and fecundity in the tropical canopy tree species, Shorea acuminata (Dipterocarpaceae) during two consecutive general flowerings. Journal of Plant Research, 2008, 121, 33-42.	1.2	28
82	Population Genetic Diversity and Structure of Ancient Tree Populations of Cryptomeria japonica var. sinensis Based on RAD-seq Data. Forests, 2020, 11, 1192.	0.9	28
83	Genetic Variation and Population Differentiation in Natural Populations of Cryptomeria japonica. Plant Species Biology, 1994, 9, 191-199.	0.6	27
84	EVIDENCE FOR INTROGRESSIVE HYBRIDIZATION BASED ON CHLOROPLAST DNA POLYMORPHISMS AND MORPHOLOGICAL VARIATION IN WILD EVERGREEN AZALEA POPULATIONS OF THE KIRISHIMA MOUNTAINS, JAPAN. Edinburgh Journal of Botany, 2000, 57, 209-219.	0.4	27
85	Development of ten microsatellite markers for Quercus mongolica var. crispula by database mining. Conservation Genetics, 2008, 9, 1083-1085.	0.8	27
86	Development of microsatellite markers in Primula sieboldii E. Morren, a threatened Japanese perennial herb. Conservation Genetics, 2003, 4, 809-811.	0.8	26
87	Genetic structure of Cerasus jamasakura, a Japanese flowering cherry, revealed by nuclear SSRs: implications for conservation. Journal of Plant Research, 2009, 122, 367-375.	1.2	26
88	Evidence of intense chromosomal shuffling during conifer evolution. Genome Biology and Evolution, 2015, 7, evv185.	1.1	26
89	Geographical cline of chloroplast DNA variation in Abies mariesii. Theoretical and Applied Genetics, 1994, 89-89, 922-926.	1.8	25
90	The phylogeographic structure of Japanese coniferous species as revealed by genetic markers. Taxon, 2006, 55, 53-66.	0.4	25

#	Article	IF	CITATIONS
91	Management units of the endangered herb Primula sieboldii based on microsatellite variation among and within populations throughout Japan. Conservation Genetics, 2009, 10, 257-267.	0.8	25
92	Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP of PCR-amplified chloroplast genes*. Theoretical and Applied Genetics, 1996, 93, 22-29.	1.8	25
93	Provenance tests for survival and growth of 50-year-old Japanese larch (Larix kaempferi) trees related to climatic conditions in central Japan. Tree Genetics and Genomes, 2014, 10, 87-99.	0.6	23
94	Genetic diversity of nuclear and mitochondrial genomes in Pinus parviflora Sieb. & Zucc. (Pinaceae) populations. Heredity, 2003, 91, 510-518.	1.2	22
95	Development of microsatellite markers in Magnolia stellata (Magnoliaceae), a threatened Japanese tree. Conservation Genetics, 2005, 6, 317-320.	0.8	22
96	Effects of genetic and environmental factors on clonal reproduction in old-growth natural populations of Cryptomeria japonica. Forest Ecology and Management, 2013, 304, 10-19.	1.4	22
97	Establishment of a microsatellite panel covering the sugi (Cryptomeria japonica) genome, and its application for localization of a male-sterile gene (ms-2). Molecular Breeding, 2014, 33, 315-325.	1.0	22
98	Approximate Bayesian computation analysis of EST-associated microsatellites indicates that the broadleaved evergreen tree Castanopsis sieboldii survived the Last Glacial Maximum in multiple refugia in Japan. Heredity, 2019, 122, 326-340.	1.2	22
99	Analysis of Expressed Sequence Tags Derived from Developing Seed and Pollen Cones of Cryptomeria japonica. Plant Biology, 2003, 5, 600-607.	1.8	21
100	Genetic structure of Miscanthus sinensis ssp. condensatus (Poaceae) on Miyake Island: implications for revegetation of volcanically devastated sites. Ecological Research, 2005, 20, 233-238.	0.7	21
101	Single nucleotide polymorphisms in Cryptomeria japonica: their discovery and validation for genome mapping and diversity studies. Tree Genetics and Genomes, 2012, 8, 1213-1222.	0.6	21
102	Development of microsatellite markers in the tropical treeNeobalanocarpus heimii(Dipterocarpaceae). Molecular Ecology, 2000, 9, 1684-1685.	2.0	20
103	Adaptive and Slightly Deleterious Evolution in a Conifer, Cryptomeria japonica. Journal of Molecular Evolution, 2008, 67, 201-210.	0.8	20
104	Development of 14 EST-SSRs for Betula maximowicziana and their applicability to related species. Conservation Genetics, 2009, 10, 661-664.	0.8	20
105	Generation de marqueurs de séquences exprimées et développement de marqueurs microsatellites pour Castanopsis sieboldii var. sieboldii (Fagaceae). Annals of Forest Science, 2009, 66, 509-509.	0.8	20
106	Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers. Journal of Plant Research, 2010, 123, 689-699.	1.2	20
107	Identification and genetic diversity analysis of a male-sterile gene (MS1) in Japanese cedar (Cryptomeria) Tj ETQq1	1 0.7843 1.6	14 rgBT /O∨ 20
108	Application of a simplified method of chloroplast enrichment to small amounts of tissue for	0.8	19

chloroplast genome sequencing. Applications in Plant Sciences, 2017, 5, 1700002.

).8

#	Article	IF	CITATIONS
109	Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. American Journal of Botany, 2000, 87, 1480-8.	0.8	19
110	Genetic Control of Isozyme Variation in Needle Tissues of Cryptomeria japonica. Journal of Heredity, 1989, 80, 291-297.	1.0	18
111	Fine-scale spatial structure of genets and sexes in the dioecious plant Dioscorea japonica, which disperses by both bulbils and seeds. Evolutionary Ecology, 2010, 24, 1399-1415.	0.5	18
112	Scanning RNA-Seq and RAD-Seq approach to develop SNP markers closely linked to <i>MALE STERILITY 1</i> (<i>MS1</i>) in <i>Cryptomeria japonica</i> D. Don. Breeding Science, 2019, 69, 19-29.	0.9	18
113	Isolation and characterization of highly polymorphic microsatellites in the aquatic plant, Nymphoides peltata (Menyanthaceae). Molecular Ecology Notes, 2005, 5, 343-345.	1.7	17
114	Distribution of S-alleles in island populations of flowering cherry, Prunus lannesiana var. speciosa. Genes and Genetic Systems, 2007, 82, 65-75.	0.2	17
115	Enhanced hybridization rates in a Larix gmelinii var. japonica × L. kaempferi interspecific seed orchard with a single maternal clone revealed by cytoplasmic DNA markers. Tree Genetics and Genomes, 2008, 4, 637-645.	0.6	17
116	Population genetic structure and the effect of historical human activity on the genetic variability of Cryptomeria japonica core collection, in Japan. Tree Genetics and Genomes, 2014, 10, 1257-1270.	0.6	17
117	Development of EST-SSR markers for Taxus cuspidata from publicly available transcriptome sequences. Biochemical Systematics and Ecology, 2015, 63, 20-26.	0.6	17
118	TodoFirGene: Developing Transcriptome Resources for Genetic Analysis of Abies sachalinensis. Plant and Cell Physiology, 2018, 59, 1276-1284.	1.5	17
119	Genetic diversity and the origin of commercial plantation of Indonesian teak on Java Island. Tree Genetics and Genomes, 2020, 16, 1.	0.6	17
120	Highly polymorphic microsatellite markers in Chamaecyparis obtusa. Canadian Journal of Forest Research, 2001, 31, 2248-2251.	0.8	16
121	Evaluation of cleaved amplified polymorphic sequence markers for Chamaecyparis obtusa based on expressed sequence tag information from Cryptomeria japonica. Theoretical and Applied Genetics, 2004, 110, 80-91.	1.8	16
122	Contrasting patterns of DNA variation in natural populations of two related conifers, Cryptomeria japonica and Taxodium distichum (Cupressaceae sensu lato). Genes and Genetic Systems, 2006, 81, 103-113.	0.2	16
123	Genetic succession and spatial genetic structure in a natural old growth Cryptomeria japonica forest revealed by nuclear and chloroplast microsatellite markers. Forest Ecology and Management, 2008, 255, 2820-2828.	1.4	16
124	Development of EST-SSR markers from an inner bark cDNA library of Fagus crenata (Fagaceae). Conservation Genetics, 2009, 10, 1477-1485.	0.8	16
125	Male fecundity and pollen dispersal in hill dipterocarps: significance of mass synchronized flowering and implications for conservation. Journal of Ecology, 2012, 100, 405-415.	1.9	16
126	Factors Influencing Male Reproductive Success in a Cryptomeria japonica Seed Orchard Revealed by Microsatellite Marker Analysis. Silvae Genetica, 2007, 56, 207-214.	0.4	16

#	Article	IF	CITATIONS
127	Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. American Journal of Botany, 1998, 85, 629.	0.8	16
128	Allozyme variation of five natural populations of Cryptomeria japonica in western Japan Japanese Journal of Genetics, 1992, 67, 299-308.	1.0	15
129	Allozyme variation of <i>Faguscrenata</i> in northeastern Japan. Canadian Journal of Forest Research, 1994, 24, 1071-1074.	0.8	15
130	Characterization of EST–SSRs from Cryptomeria japonica. Conservation Genetics Resources, 2009, 1, 373-376.	0.4	15
131	Differentiation of three closely related Japanese oak species and detection of interspecific hybrids using AFLP markers. Botany, 2009, 87, 145-153.	0.5	15
132	Expressed sequence tag–simple sequence repeats isolated from <i>Shorea leprosula</i> and their transferability to 36 species within the Dipterocarpaceae. Molecular Ecology Resources, 2009, 9, 393-398.	2.2	15
133	Effects of Pleistocene climate change on genetic structure and diversity of Shorea macrophylla in Kalimantan Rainforest. Tree Genetics and Genomes, 2018, 14, 1.	0.6	15
134	Development and characterization of microsatellite markers in a clonal plant, Dioscorea japonica Thunb Molecular Ecology Notes, 2005, 5, 721-723.	1.7	14
135	Influence of inbreeding depression on a lake population of Nymphoides peltata after restoration from the soil seed bank. Conservation Genetics, 2006, 7, 705-716.	0.8	14
136	Mating patterns in an indoor miniature Cryptomeria japonica seed orchard as revealed by microsatellite markers. New Forests, 2010, 39, 261-273.	0.7	14
137	Conflict in outcomes for conservation based on population genetic diversity and genetic divergence approaches: a case study in the Japanese relictual conifer Sciadopitys verticillata (Sciadopityaceae). Conservation Genetics, 2014, 15, 1243-1257.	0.8	14
138	Geographic patterns of genetic variation in nuclear and chloroplast genomes of two related oaks (Quercus aliena and Q. serrata) in Japan: implications for seed and seedling transfer. Tree Genetics and Genomes, 2017, 13, 1.	0.6	14
139	Inheritance of isozyme variants in leaf tissues of hinoki, Chamaecyparis obtusa, and allozyme diversity of two natural forests Breeding Science, 1991, 41, 11-24.	0.2	14
140	Mapping quantitative trait loci for growth and wood property traits in Cryptomeria japonica across multiple environments. Tree Genetics and Genomes, 2019, 15, 1.	0.6	13
141	Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late-Quaternary. , 0, .		13
142	Development and polymorphisms of microsatellite markers for hinoki (Chamaecyparis obtusa). Molecular Ecology Notes, 2006, 6, 310-312.	1.7	12
143	Assessment of genetic diversity of native species in Izu Islands for a discriminate choice of source populations: Implications for revegetation of volcanically devastated sites. Conservation Genetics, 2006, 7, 399-413.	0.8	12
144	Development of 11 EST-SSRs for Japanese white birch, Betula platyphylla var. japonica and their transferability to related species. Conservation Genetics, 2009, 10, 1385-1388.	0.8	12

0.6

9

#	Article	IF	CITATIONS
145	Genetic Structure of an Endemic Japanese Conifer, Sciadopitys verticillata (Sciadopityaceae), by Using Microsatellite Markers. Journal of Heredity, 2010, 101, 292-297.	1.0	12
146	A simple allele-specific PCR marker for identifying male-sterile trees: Towards DNA marker-assisted selection in the Cryptomeria japonica breeding program. Tree Genetics and Genomes, 2014, 10, 1069-1077.	0.6	12
147	DNA analysis of clonal structure of an old growth, isolated forest of <i>Cryptomeria japonica </i> in a snowy region. Canadian Journal of Forest Research, 2001, 31, 377-383.	0.8	12
148	The Contribution of Pollen Germination Rates to Uneven Paternity Among Polycrosses of Cryptomeria japonica. Silvae Genetica, 2009, 58, 139-144.	0.4	12
149	Physical map of chloroplast DNA in sugi, Cryptomeria japonica. Theoretical and Applied Genetics, 1993, 86-86, 166-172.	1.8	11
150	Characterization of 15 polymorphic microsatellite loci in an endangered tropical tree Hopea bilitonensis (Dipterocarpaceae) in Peninsular Malaysia. Molecular Ecology Notes, 2004, 4, 147-149.	1.7	11
151	QTL analysis of heterostyly in Primula sieboldii and its application for morph identification in wild populations. Annals of Botany, 2011, 108, 133-142.	1.4	11
152	Development of 32 EST-SSR Markers forAbies firma(Pinaceae) and Their Transferability to Related Species. Applications in Plant Sciences, 2013, 1, 1200464.	0.8	11
153	Genetic evidence for paternal inheritance of the chloroplast in four Australian Callitris species (Cupressaceae). Journal of Forest Research, 2014, 19, 244-248.	0.7	11
154	Mixed Mating System Are Regulated by Fecundity in Shorea curtisii (Dipterocarpaceae) as Revealed by Comparison under Different Pollen Limited Conditions. PLoS ONE, 2015, 10, e0123445.	1.1	11
155	Potential of Genome-Wide Association Studies and Genomic Selection to Improve Productivity and Quality of Commercial Timber Species in Tropical Rainforest, a Case Study of Shorea platyclados. Forests, 2020, 11, 239.	0.9	11
156	Diversification of terpenoid emissions proposes a geographic structure based on climate and pathogen composition in Japanese cedar. Scientific Reports, 2021, 11, 8307.	1.6	11
157	Genetic guidelines for tree species and perspectives on the conservation and sustainable use of forests. Journal of Forest Research, 2022, 27, 83-95.	0.7	11
158	Development and polymorphism of simple sequence repeat DNA markers for the evergreen shrub Ilex leucoclada M Molecular Ecology Notes, 2004, 4, 531-533.	1.7	10
159	Complex pollination of a tropical Asian rainforest canopy tree by flowerâ€feeding thrips and thripsâ€feeding predators. American Journal of Botany, 2016, 103, 1912-1920.	0.8	10
160	Large contribution of clonal reproduction to the distribution of deciduous liana species (Wisteria) Tj ETQq0 0 0 r 2018, 121, 359-365.	rgBT /Over 1.4	lock 10 Tf 50 10
161	Development of microsatellite markers forDryobalanops aromatica(Dipterocarpaceae), a tropical emergent tree in Southeast Asia. Molecular Ecology Notes, 2007, 7, 623-625.	1.7	9

162 Identification of QTLs associated with male strobilus abundance in Cryptomeria japonica. Tree Genetics and Genomes, 2012, 8, 1319-1329.

#	Article	IF	CITATIONS
163	Effects of the last glacial period on genetic diversity and genetic differentiation in Cryptomeria japonica in East Asia. Tree Genetics and Genomes, 2020, 16, 1.	0.6	9
164	Paternal Inheritance of Chloroplast and Mitochondrial DNA in Interspecific Hybrids of Chamaecyparis spp Breeding Science, 1998, 48, 177-179.	0.2	9
165	Development of microsatellite and amplicon length polymorphism markers for <i>Camellia japonica</i> L. from tea plant (<i>Camellia sinensis</i>) expressed sequence tags. Molecular Ecology Resources, 2009, 9, 814-816.	2.2	8
166	Multilocus patterns of nucleotide polymorphism and demographic change in <i>Taxodium distichum</i> (Cupressaceae) in the lower Mississippi River alluvial valley. American Journal of Botany, 2010, 97, 1848-1857.	0.8	8
167	Paternity analysis in a progeny test of Cryptomeria japonica revealed adverse effects of pollen contamination from outside seed orchards on morphological traits. Tree Genetics and Genomes, 2011, 7, 1089-1097.	0.6	8
168	Isolation and characterization of 52 polymorphic EST‧SR markers for <i>Callitris columellaris</i> (Cupressaceae). American Journal of Botany, 2011, 98, e363-8.	0.8	8
169	Population genetic structure of a widespread coniferous tree, Taxodium distichum [L.] Rich. (Cupressaceae), in the Mississippi River Alluvial Valley and Florida. Tree Genetics and Genomes, 2012, 8, 1135-1147.	0.6	8
170	Development of 13 EST-SSRs for Cerasus jamasakura and their transferability for Japanese flowering cherries. Conservation Genetics, 2009, 10, 685-688.	0.8	7
171	Development of 120 microsatellite markers for Primula sieboldii E. Morren for linkage mapping. Conservation Genetics, 2009, 10, 1945-1952.	0.8	7
172	Non-Density Dependent Pollen Dispersal of Shorea maxwelliana (Dipterocarpaceae) Revealed by a Bayesian Mating Model Based on Paternity Analysis in Two Synchronized Flowering Seasons. PLoS ONE, 2013, 8, e82039.	1.1	7
173	Effects of different silvicultural systems on the genetic diversity of Shorea parvifolia populations in the tropical rainforest of Southeast Asia. Tree Genetics and Genomes, 2016, 12, 1.	0.6	7
174	Pyramiding of male-sterile genes in Cryptomeria japonica D. Don with the aid of closely linked markers. Tree Genetics and Genomes, 2017, 13, 1.	0.6	7
175	Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing. Heredity, 2019, 123, 371-383.	1.2	7
176	Contact zone of two different chloroplast lineages and genetic guidelines for seed transfer in <i>Quercus serrata</i> and <i>Quercus crispula</i> . Plant Species Biology, 2021, 36, 72-83.	0.6	7
177	Review: Genetic structure and local adaptation in natural forests of <scp><i>Cryptomeria japonica</i></scp> . Ecological Research, 2023, 38, 64-73.	0.7	7
178	Single-strand conformation polymorphism of sequence-tagged site markers based on partial sequences of cDNA clones in Cryptomeria japonica Genes and Genetic Systems, 2002, 77, 251-257.	0.2	6
179	Twenty-four additional microsatellite markers derived from expressed sequence tags of the endangered tropical tree Shorea leprosula (Dipterocarpaceae). Conservation Genetics Resources, 2012, 4, 351-354.	0.4	6
180	Fruiting behavior of dipterocarps in two consecutive episodes of general flowering in a Malaysian lowland rain forest. Journal of Forest Research, 2012, 17, 378-387.	0.7	6

#	Article	IF	CITATIONS
181	Resilient Plant–Bird Interactions in a Volcanic Island Ecosystem: Pollination of Japanese Camellia Mediated by the Japanese White-Eye. PLoS ONE, 2013, 8, e62696.	1.1	6
182	Evolutionary rate variation in two conifer species, <i>Taxodium</i> <i>distichum</i> (L.) Rich. var. <i>distichum</i> (baldcypress) and <i>Cryptomeria japonica</i> (Thunb. ex L.f.) D. Don (Sugi, Japanese cedar). Genes and Genetic Systems, 2015, 90, 305-315.	0.2	6
183	Assessment of the genetic diversity and population structure of Maire yew (<i>Taxus) Tj ETQq1 1 0.784314 rgBT , 48, 589-598.</i>	Overlock 0.8	10 Tf 50 6 <mark>6</mark> 6
184	Construction of a reference transcriptome for the analysis of male sterility in sugi (Cryptomeria) Tj ETQq0 0 0 rgB	T /Overloc 1.1	k 10 Tf 50 6
185	Cross-Species Amplification of Microsatellite Loci for the Endangered Conifer, Taxus chinensis var. mairei (Taxaceae). Silvae Genetica, 2012, 61, 287-291.	0.4	6
186	Population and genetic status of Primula kisoana var. kisoana, a local endemic of the northern Kanto region, Japan. Plant Species Biology, 2005, 20, 209-218.	0.6	5
187	Gene Flow, Mating Systems, and Inbreeding Depression in Natural Populations of Tropical Trees. Advances in Asian Human-Environmental Research, 2011, , 57-68.	0.7	5
188	Verification of a phenotypic discrimination method for hybrid larch seedlings using DNA markers. Journal of Forest Research, 2014, 19, 461-468.	0.7	5
189	Development and polymorphism of simple sequence repeat DNA markers for Shorea curtisii and other Dipterocarpaceae species. Heredity, 1998, 81, 422-428.	1.2	5
190	Effect of population density of compatible neighbours on inbreeding level within a Primula sieboldii population. Ecological Research, 2008, 23, 307-315.	0.7	4
191	Development and characterization of EST-SSR markers for Sciadopitys verticillata (Sciadopityaceae). Conservation Genetics, 2009, 10, 1997-1999.	0.8	4
192	Impact of negative frequency-dependent selection on mating pattern and genetic structure: a comparative analysis of the S-locus and nuclear SSR loci in Prunus lannesiana var. speciosa. Heredity, 2012, 109, 188-198.	1.2	4
193	Effects of logging rotation in a lowland dipterocarp forest on mating system and gene flow in Shorea parvifolia. Tree Genetics and Genomes, 2017, 13, 1.	0.6	4
194	Allozyme Variation in Plus-tree of Hinoki, Chamaecyparis obtusa, Selected from Artificial Stands Breeding Science, 1993, 43, 485-494.	0.2	4
195	Clone Identification of Major Cutting Cultivars in Cryptomeria japonica D. Don and Evaluation of their Genetic Relationship in Kyushu. Journal of the Japanese Forest Society, 2013, 95, 220-226.	0.1	4
196	Allozyme variation of old <i>Ginkgobiloba</i> memorial trees in western Japan. Canadian Journal of Forest Research, 1992, 22, 939-944.	0.8	3
197	Cost-Effective Method to Synthesize Fluorescently Labeled DNA Size Standards Using Cloned AFLP Fragments. BioTechniques, 2003, 34, 1146-1148.	0.8	3
198	Characterization of microsatellite loci in Primula modesta Bisset et Moore (Primulaceae). Molecular Ecology Notes, 2004, 4, 560-562.	1.7	3

#	Article	IF	CITATIONS
199	Conservation of the Lake Kasumigaura population of Nymphoides indica (L.) Kuntze based on genetic evaluation using microsatellite markers. Limnology, 2006, 7, 193-197.	0.8	3
200	Genetic Diversity and Structure Using Microsatellite Markers in Natural and Breeding Populations of Thujopsis dolabrata var. hondae. Journal of the Japanese Forest Society, 2012, 94, 247-251.	0.1	3
201	Detecting east–west genetic differentiation in Castanopsis (Fagaceae) on the main islands of Japan and north–south on the Ryukyu Islands, based on chloroplast haplotypes. Plant Systematics and Evolution, 2016, 302, 1093-1107.	0.3	3
202	Interspecific variation in clonality in temperate lianas revealed by genetic analysis: Do clonal proliferation processes differ among lianas?. Plant Species Biology, 2021, 36, 578.	0.6	3
203	Isolation and characterization of microsatellite markers from the RAD sequence of two temperate liana species: Euonymus fortunei (Celastraceae) and Schizophragma hydrangeoides (Hydrangeaceae). Silvae Genetica, 2017, 66, 40-42.	0.4	3
204	Genetic structure of an important widely distributed tropical forest tree, Shorea parvifolia, in Southeast Asia. Tree Genetics and Genomes, 2021, 17, 1.	0.6	3
205	Mating System and Gene Flow of Dipterocarps Revealed by Genetic Markers. , 2003, , 285-292.		2
206	Development of Nuclear and Chloroplast Microsatellite Markers for the Endangered ConiferCallitris sulcata(Cupressaceae). Applications in Plant Sciences, 2015, 3, 1500045.	0.8	2
207	Inferences of population structure and demographic history for <i>Taxodium distichum</i> , a coniferous tree in North America, based on amplicon sequencing analysis. American Journal of Botany, 2016, 103, 1937-1949.	0.8	2
208	Development and characterization of 10 microsatellite markers from <i>Wisteria floribunda</i> (Fabaceae). Silvae Genetica, 2016, 65, 55-58.	0.4	2
209	Development and characterization of EST-SSR markers for Taxus mairei (Taxaceae) and their transferability across species. Silvae Genetica, 2016, 65, 67-70.	0.4	2
210	Determination of intraspecific variation in seed weight, leaf functional traits, and sapling size of <i>Betula ermanii</i> using a common garden experiment. Journal of Forest Research, 2021, 26, 419-426.	0.7	2
211	Isozyme Variation of Nature-reserve Population of Primula sieboldii in Tajimagahara plain Breeding Science, 1991, 41, 331-339.	0.2	2
212	Analysis of Clones of Nango-hi, a Vegetatively Propagated Cultivar of Chamaecyparis obtusa ENDL. Based on Isozyme Genotypes Breeding Science, 1993, 43, 219-230.	0.2	2
213	Recent clonal reproduction of Cryptomeria japonica in a snowy region revealed by a survey of small-sized ramets. Silvae Genetica, 2020, 69, 152-157.	0.4	2
214	The Effect of Typhoon Disturbance and Snow Pressure Stress on Clonal Structure of <i>Cryptomeria japonica</i> . Journal of the Japanese Forest Society, 2015, 97, 19-24.	0.1	2
215	Linkage of allozyme loci in Japanese red pine (<i>Pinusdensiflora</i>). Canadian Journal of Forest Research, 1993, 23, 680-687.	0.8	1
216	Towards a legal framework for systematic conservation: identification and development of allele-specific PCR markers for conspecific varieties of an endangered perennial herb Primula kisoana Miquel based on sequence variation of chloroplast DNA. Conservation Genetics, 2008, 9, 1173-1181.	0.8	1

#	Article	IF	CITATIONS
217	Isolation and characterization of 12 microsatellite loci for the tropical tree species Shorea maxwelliana and S. laevis (Dipterocarpaceae). Conservation Genetics Resources, 2010, 2, 109-111.	0.4	1
218	Development of chloroplast markers for <scp>J</scp> apanese and snow camellias. Plant Species Biology, 2016, 31, 80-84.	0.6	1
219	Development and characterization of chloroplast simple sequence repeat markers for Prunus taxa (eleven Japanese native taxa and two foreign taxa). Silvae Genetica, 2018, 67, 124-126.	0.4	1
220	Study of sugi (Cryptomeria japonicaD. Don) with male-sterility gene using CAPS markers. Journal of Forest Research, 2005, 10, 61-66.	0.7	0
221	Development and characterization of novel chloroplast microsatellite markers for Cryptomeria japonica var. sinensis (Cupressaceae) and their cross-species amplification. Biologia (Poland), 2022, 77, 361-367.	0.8	Ο