
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/710622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ti ₃ C ₂ MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Applied Materials & Interfaces, 2016, 8, 21011-21019.	4.0	775
2	Selfâ€Assembly Core–Shell Grapheneâ€Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. Advanced Functional Materials, 2018, 28, 1803938.	7.8	561
3	Carbon Nanotube–Multilayered Graphene Edge Plane Core–Shell Hybrid Foams for Ultrahighâ€Performance Electromagneticâ€Interference Shielding. Advanced Materials, 2017, 29, 1701583.	11.1	560
4	Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon, 2017, 116, 50-58.	5.4	525
5	Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry A, 2014, 2, 16403-16409.	5.2	514
6	Electromagnetic properties of Si–C–N based ceramics and composites. International Materials Reviews, 2014, 59, 326-355.	9.4	499
7	Lightweight Ti ₂ CT <i>_x</i> MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. ACS Applied Materials & Interfaces, 2019, 11, 10198-10207.	4.0	488
8	Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2017, 9, 6332-6341.	4.0	428
9	Direct Growth of Edgeâ€Rich Graphene with Tunable Dielectric Properties in Porous Si ₃ N ₄ Ceramic for Broadband Highâ€Performance Microwave Absorption. Advanced Functional Materials, 2018, 28, 1707205.	7.8	425
10	Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon, 2014, 73, 185-193.	5.4	424
11	Ti ₃ C ₂ MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 2017, 5, 4068-4074.	2.7	345
12	Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. ACS Applied Materials & Interfaces, 2017, 9, 20038-20045.	4.0	323
13	Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide Modified by Maghemite Colloidal Nanoparticle Clusters. Journal of Physical Chemistry C, 2013, 117, 19701-19711.	1.5	322
14	Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2017, 9, 11803-11810.	4.0	315
15	Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon, 2018, 132, 343-351.	5.4	280
16	Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon, 2019, 142, 346-353.	5.4	253
17	Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Advanced Optical Materials, 2019, 7, 1900267.	3.6	245
18	3D printed electrochemical energy storage devices. Journal of Materials Chemistry A, 2019, 7, 4230-4258.	5.2	232

#	Article	IF	CITATIONS
19	Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic. Journal of the European Ceramic Society, 2014, 34, 257-266.	2.8	222
20	Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. Journal of the European Ceramic Society, 2016, 36, 2695-2703.	2.8	221
21	Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon, 2017, 111, 94-102.	5.4	184
22	Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon, 2014, 68, 501-510.	5.4	178
23	A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti ₂ CT _x MXene. Journal of Materials Chemistry C, 2017, 5, 7621-7628.	2.7	177
24	Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites. Carbon, 2015, 95, 10-19.	5.4	176
25	MXene Nanofibers as Highly Active Catalysts for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 8976-8982.	3.2	174
26	Electrospinning of Fe/SiC Hybrid Fibers for Highly Efficient Microwave Absorption. ACS Applied Materials & amp; Interfaces, 2017, 9, 7265-7271.	4.0	173
27	Ultralight MXene-Coated, Interconnected SiCnws Three-Dimensional Lamellar Foams for Efficient Microwave Absorption in the X-Band. ACS Applied Materials & Interfaces, 2018, 10, 34524-34533.	4.0	172
28	Laminated Hybrid Junction of Sulfurâ€Doped TiO ₂ and a Carbon Substrate Derived from Ti ₃ C ₂ MXenes: Toward Highly Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Science, 2018, 5, 1700870.	5.6	163
29	Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon, 2017, 122, 718-725.	5.4	160
30	In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon, 2016, 107, 36-45.	5.4	158
31	Electromagnetic Wave Absorption Properties of ZnO-Based Materials Modified with ZnAl ₂ O ₄ Nanograins. Journal of Physical Chemistry C, 2013, 117, 2135-2146.	1.5	149
32	Flexible SiC/Si ₃ N ₄ Composite Nanofibers with in Situ Embedded Graphite for Highly Efficient Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2017, 9, 28844-28858.	4.0	142
33	Highly flexible, foldable and stretchable Ni–Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 16617-16626.	5.2	128
34	Interfacial Engineering of Cobalt Nitrides and Mesoporous Nitrogen-Doped Carbon: Toward Efficient Overall Water-Splitting Activity with Enhanced Charge-Transfer Efficiency. ACS Energy Letters, 2020, 5, 692-700.	8.8	125
35	One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties. Carbon, 2017, 125, 207-220.	5.4	120
36	2D‣ayered Carbon/TiO ₂ Hybrids Derived from Ti ₃ C ₂ <i>MXenes</i> for Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Advanced Materials Interfaces, 2017, 4, 1700577.	1.9	120

#	Article	IF	CITATIONS
37	Improved dielectric and electromagnetic interference shielding properties of ferrocene-modified polycarbosilane derived SiC/C composite ceramics. Journal of the European Ceramic Society, 2014, 34, 2187-2201.	2.8	117
38	The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. Journal of Materials Chemistry A, 2016, 4, 8932-8951.	5.2	114
39	Enhanced Flexibility and Microwave Absorption Properties of HfC/SiC Nanofiber Mats. ACS Applied Materials & Interfaces, 2018, 10, 29876-29883.	4.0	107
40	Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Advances, 2016, 6, 6467-6474.	1.7	101
41	Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon, 2019, 148, 421-429.	5.4	100
42	Ultralight Cellular Foam from Cellulose Nanofiber/Carbon Nanotube Self-Assemblies for Ultrabroad-Band Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 22628-22636.	4.0	99
43	3D Structural Strengthening Urchinâ€Like Cu(OH) ₂ â€Based Symmetric Supercapacitors with Adjustable Capacitance. Advanced Functional Materials, 2019, 29, 1903588.	7.8	97
44	3D printing of structured electrodes for rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 10670-10694.	5.2	95
45	High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics. Journal of Materials Science, 2015, 50, 1478-1487.	1.7	91
46	Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon, 2019, 147, 276-283.	5.4	91
47	Mechanical and dielectric properties of porous and wave-transparent Si3N4-Si3N4 composite ceramics fabricated by 3D printing combined with chemical vapor infiltration. Journal of Advanced Ceramics, 2019, 8, 399-407.	8.9	87
48	Ti ₃ C ₂ T <i>_x</i> /MoS ₂ Selfâ€Rolling Rodâ€Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption. Advanced Science, 2022, 9, e2201118.	5.6	85
49	Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics. Journal of Materials Science, 2008, 43, 2806-2811.	1.7	83
50	A sheath-core shaped ZrO2-SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption. Chemical Engineering Journal, 2021, 419, 129414.	6.6	82
51	Deposition Mechanism for Chemical Vapor Deposition of Zirconium Carbide Coatings. Journal of the American Ceramic Society, 2008, 91, 1249-1252.	1.9	77
52	Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	77
53	Superhydrophobic Self-Cleaning Hierarchical Micro-/Nanocomposite Coating with High Corrosion Resistance and Durability. ACS Sustainable Chemistry and Engineering, 2021, 9, 4111-4121.	3.2	77
54	Flexible, hydrophobic SiC ceramic nanofibers used as high frequency electromagnetic wave absorbers. Ceramics International, 2017, 43, 7424-7435.	2.3	76

#	Article	IF	CITATIONS
55	Tailoring strength and modulus by 3D printing different continuous fibers and filled structures into composites. Advanced Composites and Hybrid Materials, 2019, 2, 312-319.	9.9	75
56	SiC Nanofiber Mat: A Broad-Band Microwave Absorber, and the Alignment Effect. ACS Applied Materials & amp; Interfaces, 2017, 9, 43072-43080.	4.0	74
57	Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption. Carbon, 2021, 171, 474-483.	5.4	73
58	Three-Dimensional Printing of Ti3SiC2-Based Ceramics. Journal of the American Ceramic Society, 2011, 94, 969-972.	1.9	72
59	Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation. Materials and Design, 2016, 92, 563-570.	3.3	71
60	Morphology Design of Co-electrospinning MnO-VN/C Nanofibers for Enhancing the Microwave Absorption Performances. ACS Applied Materials & amp; Interfaces, 2020, 12, 13208-13216.	4.0	71
61	Effect of Aluminum Doping on Microwave Absorption Properties of <scp><scp>ZnO</scp></scp> / <scp><rscp>ZrSiO</rscp></scp> ₄ Composite Ceramics. Journal of the American Ceramic Society, 2012, 95, 3158-3165.	1.9	67
62	A hierarchical oxygen vacancy-rich WO ₃ with "nanowire-array-on-nanosheet-array― structure for highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 6730-6739.	5.2	67
63	Defectâ€Engineered Graphene/Si ₃ N ₄ Multilayer Alternating Coreâ€Shell Nanowire Membrane: A Plainified Hybrid for Broadband Electromagnetic Wave Absorption. Advanced Functional Materials, 2022, 32, .	7.8	66
64	Reduced Graphene Oxide/Silicon Nitride Composite for Cooperative Electromagnetic Absorption in Wide Temperature Spectrum with Excellent Thermal Stability. ACS Applied Materials & Interfaces, 2019, 11, 5364-5372.	4.0	64
65	Ablation Resistance of Different Coating Structures for C/ZrB ₂ –SiC Composites Under Oxyacetylene Torch Flame. International Journal of Applied Ceramic Technology, 2009, 6, 145-150.	1.1	63
66	One-step synthesis of 2D-layered carbon wrapped transition metal nitrides from transition metal carbides (MXenes) for supercapacitors with ultrahigh cycling stability. Chemical Communications, 2018, 54, 2755-2758.	2.2	59
67	High temperature electromagnetic interference shielding of lightweight and flexible ZrC/SiC nanofiber mats. Chemical Engineering Journal, 2021, 404, 126521.	6.6	59
68	A 3D-printed stretchable structural supercapacitor with active stretchability/flexibility and remarkable volumetric capacitance. Journal of Materials Chemistry A, 2020, 8, 13646-13658.	5.2	57
69	Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. Journal of Energy Chemistry, 2022, 65, 254-279.	7.1	56
70	The Oxidation Behavior of SiC–ZrC–SiC oated C/SiC Minicomposites at Ultrahigh Temperatures. Journal of the American Ceramic Society, 2010, 93, 3990-3992.	1.9	52
71	Effects of SiC fibers on microwave absorption and electromagnetic interference shielding properties of SiCf/SiCN composites. Ceramics International, 2016, 42, 19237-19244.	2.3	52
72	Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes. Carbon, 2020, 165, 150-162.	5.4	52

#	Article	IF	CITATIONS
73	Water Vapor Corrosion Behavior of Scandium Silicates at 1400°C. Journal of the American Ceramic Society, 2009, 92, 193-196.	1.9	51
74	Prediction of stable hafnium carbides: Stoichiometries, mechanical properties, and electronic structure. Physical Review B, 2013, 88, .	1.1	51
75	The microstructure and electromagnetic wave absorption properties of near-stoichiometric SiC fibre. Ceramics International, 2017, 43, 3267-3273.	2.3	51
76	Sandwich-like SiCnw/C/Si3N4 porous layered composite for full X-band electromagnetic wave absorption at elevated temperature. Composites Part B: Engineering, 2020, 183, 107629.	5.9	51
77	Molecule editable 3D printed polymer-derived ceramics. Coordination Chemistry Reviews, 2020, 422, 213486.	9.5	51
78	Electromagnetic properties of SiO2 reinforced with both multi-wall carbon nanotubes and ZnO particles. Carbon, 2013, 64, 541-544.	5.4	49
79	Influence of temperature on dielectric properties and microwave absorbing performances of TiC nanowires/SiO2 composites. Ceramics International, 2014, 40, 15391-15397.	2.3	49
80	Microstructure and Mechanical Properties of Lu ₂ O ₃ â€Doped Porous Silicon Nitride Ceramics Using Phenolic Resin as Poreâ€Forming Agent. International Journal of Applied Ceramic Technology, 2010, 7, 391-398.	1.1	46
81	Dielectric and Electromagnetic Wave Absorbing Properties of Two Types ofÂSiC Fibres with Different Compositions. Journal of Materials Science and Technology, 2013, 29, 55-58.	5.6	46
82	Enhanced mechanical property and tunable dielectric property of SiCf/SiC-SiBCN composites by CVI combined with PIP. Journal of Advanced Ceramics, 2021, 10, 758-767.	8.9	46
83	Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2TX MXene/polymer films. Carbon, 2021, 181, 130-142.	5.4	46
84	Evolutionary search for new high- <i>k</i> dielectric materials: methodology and applications to hafnia-based oxides. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 76-84.	0.2	44
85	A novel SiC-based microwave absorption ceramic with Sc2Si2O7 as transparent matrix. Journal of the European Ceramic Society, 2018, 38, 4189-4197.	2.8	44
86	Polymerâ€Derived SiOC–barium–strontium aluminosilicate Coatings as an Environmental Barrier for C/SiC Composites. Journal of the American Ceramic Society, 2010, 93, 4148-4152.	1.9	43
87	Optimized design of high-temperature microwave absorption properties of CNTs/Sc2Si2O7 ceramics. Journal of Alloys and Compounds, 2020, 823, 153864.	2.8	40
88	Mechanical Behavior and Electromagnetic Interference Shielding Properties of C/SiC–Ti ₃ Si(Al)C ₂ . Journal of the American Ceramic Society, 2016, 99, 1717-1724.	1.9	39
89	Effect of machining parameter on femtosecond laser drilling processing on SiC/SiC composites. International Journal of Advanced Manufacturing Technology, 2018, 96, 1795-1811.	1.5	39
90	Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology, 2018, 29, 184003.	1.3	39

			Lai-fei Chen	IG	
#	Article			IF	Citations
91	3D printing "wire-on-sphere―hierarchical SiC nanowires / SiC whiskers foam for ef high-temperature electromagnetic wave absorption. Journal of Materials Science and To Ad30rption offatomic and molecular oxygen on 3C-SiC(111) and < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	ficient echnology,		5.6	39
92					

#	Article	IF	CITATIONS
109	First printing of continuous fibers into ceramics. Journal of the American Ceramic Society, 2019, 102, 3244-3255.	1.9	30
110	Microstructures and mechanical properties of three-dimensional ceramic filler modified carbon/carbon composites. Ceramics International, 2014, 40, 399-408.	2.3	29
111	Multiscale designed SiC _f /Si ₃ N ₄ composite for low and high frequency cooperative electromagnetic absorption. Journal of the American Ceramic Society, 2018, 101, 5552-5563.	1.9	29
112	Efficient multiscale strategy for toughening HfB 2 ceramics: A heterogeneous ceramic–metal layered architecture. Journal of the American Ceramic Society, 2021, 104, 1841-1851.	1.9	29
113	Effect of curing and pyrolysis processing on the ceramic yield of a highly branched polycarbosilane. Journal of Materials Science, 2009, 44, 721-725.	1.7	28
114	Wet oxidation behavior of SiC/(SiC―SiBCN)x composites prepared by CVI combined with PIOP process. Journal of the American Ceramic Society, 2019, 102, 6239-6255.	1.9	28
115	Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties. Journal of the American Ceramic Society, 2019, 102, 5305-5315.	1.9	28
116	3D-printed impedance gradient Al2O3 ceramic with in-situ growing needle-like SiC nanowires for electromagnetic wave absorption. Ceramics International, 2021, 47, 31990-31999.	2.3	28
117	Braking Behavior of C/SiC Composites Prepared by Chemical Vapor Infiltration. International Journal of Applied Ceramic Technology, 2005, 2, 114-121.	1.1	27
118	Effect of energy density on the machining character of C/SiC composites by picosecond laser. Applied Physics A: Materials Science and Processing, 2014, 116, 1221-1228.	1.1	27
119	Oxidation behavior of three-dimensional SiC/SiC composites in air and combustion environment. Composites Part A: Applied Science and Manufacturing, 2000, 31, 1015-1020.	3.8	26
120	Microstructure and Mechanical Properties of SiC and Carbon Hybrid Fiber Reinforced SiC Matrix Composite. International Journal of Applied Ceramic Technology, 2011, 8, 308-316.	1.1	26
121	Carbon Nanotubes Grown on Flax Fabric as Hierarchical Allâ€Carbon Flexible Electrodes for Supercapacitors. Advanced Materials Interfaces, 2017, 4, 1601123.	1.9	26
122	Nondestructive Evaluation and Mechanical Characterization of a Defectâ€Embedded Ceramic Matrix Composite Laminate. International Journal of Applied Ceramic Technology, 2007, 4, 378-386.	1.1	25
123	Effect of Braking Speed on Friction and Wear Behaviors of C/Câ€SiC Composites. International Journal of Applied Ceramic Technology, 2007, 4, 463-469.	1.1	25
124	Hot Corrosion Behavior of Barium Aluminosilicateâ€Coated C/SiC Composites at 900°C. Journal of the American Ceramic Society, 2010, 93, 204-208.	1.9	25
125	Preparation and Performance of Si ₃ N ₄ Hollow Microspheres by the Template Method and Carbothermal Reduction Nitridation. ACS Applied Materials & Interfaces, 2019, 11, 39054-39061.	4.0	25
126	Fabrication and electromagnetic interference shielding effectiveness of Ti 3 Si(Al)C 2 modified Al 2 O 3 /SiC composites. Ceramics International, 2016, 42, 9448-9454.	2.3	24

LAI-FEI CHENG

#	Article	IF	CITATIONS
127	Microstructure and properties of dense Tyranno-ZMI SiC/SiC containing Ti3Si(Al)C2 with plastic deformation toughening mechanism. Journal of the European Ceramic Society, 2018, 38, 1069-1078.	2.8	24
128	3D printing of PDC-SiOC@SiC twins with high permittivity and electromagnetic interference shielding effectiveness. Journal of the European Ceramic Society, 2021, 41, 5437-5444.	2.8	24
129	Rational design of n-Bi12TiO20@p-BiOI core–shell heterojunction for boosting photocatalytic NO removal. Journal of Colloid and Interface Science, 2022, 607, 242-252.	5.0	24
130	Preparation and Mechanical Properties of Carbon Fiber Reinforced (BC x –SiC) n Multilayered Matrix Composites. Applied Composite Materials, 2007, 14, 277-286.	1.3	23
131	UV curing behavior of a highly branched polycarbosilane. Journal of Materials Science, 2009, 44, 970-975.	1.7	23
132	SiCN-based composite ceramics fabricated by chemical vapor infiltration with excellent mechanical and electromagnetic properties. Materials Letters, 2013, 111, 169-172.	1.3	23
133	3D/4D printed tunable electrical metamaterials with more sophisticated structures. Journal of Materials Chemistry C, 2021, 9, 12010-12036.	2.7	23
134	Effect of energy density and feeding speed on micro-holes drilling in SiC/SiC composites by picosecond laser. International Journal of Advanced Manufacturing Technology, 2016, 84, 1917-1925.	1.5	22
135	Oxidation Protective Multilayer CVD SiC Coatings Modified by a Graphitic B-C Interlayer for 3D C/SiC Composite. Applied Composite Materials, 2006, 13, 397-406.	1.3	21
136	Microstructure and mechanical properties of SiCP/SiC and SiCW/SiC composites by CVI. Journal of Materials Science, 2010, 45, 392-398.	1.7	21
137	Broadband Microwave Absorbing Composites with a Multi-Scale Layered Structure Based on Reduced Graphene Oxide Film as the Frequency Selective Surface. Materials, 2018, 11, 1771.	1.3	21
138	3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation. Journal of Materiomics, 2021, 7, 8-18.	2.8	21
139	Broadening the absorption bandwidth by novel series–parallel cross convex–concave structures. Journal of Materials Chemistry C, 2021, 9, 5411-5424.	2.7	21
140	Comparison of oxidation resistance of NiCoCrAlTaY-coated and -uncoated Mar-M247 superalloys in the air at 1150°C. Journal of Materials Science, 2012, 47, 2278-2283.	1.7	20
141	Comparison of Tensile Behaviors of Carbon/Ceramic Composites with Various Fiber Architectures. International Journal of Applied Ceramic Technology, 2013, 10, 266-275.	1.1	20
142	Thermodynamic Analysis on the Codeposition of <scp><scp>SiC</scp></scp> – <scp>Si</scp> 3 ₃ <scp><scp>N</scp></scp> _{4Composite Ceramics by Chemical Vapor Deposition using <scp><scp>SiCl</scp></scp>} – <scp><scp>NH</scp></scp> ₃ – <scp>CHMixture Gases. Journal of the American Ceramic Society, 2013, 96, 979-986.</scp>	1.9	20 ₄
143	Effects of particle sizes and contents of ceramic fillers on tribological behavior of 3D C/C composites. Ceramics International, 2014, 40, 14029-14037.	2.3	20
144	Microstructure and <scp>EMW</scp> absorption properties of <scp>CVI</scp> Si ₃ N ₄ –Si <scp>CN</scp> ceramics with <scp>BN</scp> interface annealed in N ₂ atmosphere. Journal of the American Ceramic Society, 2018, 101, 1201-1210.	1.9	20

LAI-FEI CHENG

#	Article	IF	CITATIONS
145	Flexible Fe ₃ Si/SiC ultrathin hybrid fiber mats with designable microwave absorption performance. RSC Advances, 2018, 8, 33574-33582.	1.7	20
146	Enhanced electromagnetic wave absorption properties of a novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 porous ceramic. Ceramics International, 2020, 46, 22474-22481.	2.3	20
147	3D Printed Electrochromic Supercapacitors with Ultrahigh Mechanical Strength and Energy Density. Small, 2021, 17, e2102639.	5.2	20
148	Oxidation Behavior of C/SiC Composite with CVD SiC-B4C Coating in a Wet Oxygen Environment. Applied Composite Materials, 2009, 16, 83-92.	1.3	19
149	Mechanical and electrical properties of carbon nanotube buckypaper reinforced silicon carbide nanocomposites. Ceramics International, 2016, 42, 4984-4992.	2.3	19
150	Anisotropic compressive properties of porous <scp>CNT</scp> / <scp>SiC</scp> composites produced by direct matrix infiltration of <scp>CNT</scp> aerogel. Journal of the American Ceramic Society, 2017, 100, 2243-2252.	1.9	19
151	Thermal stability and dielectric properties of 2D Ti ₂ C MXenes via annealing under a gas mixture of Ar and H ₂ atmosphere. Functional Composites and Structures, 2019, 1, 015002.	1.6	19
152	Formation of Ultra-High Temperature Ceramic Hollow Microspheres as Promising Lightweight Thermal Insulation Materials via a Molten Salt-Assisted Template Method. ACS Applied Materials & Interfaces, 2021, 13, 37388-37397.	4.0	19
153	Electromagnetic wave-transparent porous silicon nitride ceramic prepared by gel-casting combined with in-situ nitridation reaction. Journal of the European Ceramic Society, 2021, 41, 7620-7629.	2.8	19
154	A novel SiC/Zn0.5Cd0.5S solid-state Z-scheme system and its enhanced hydrogen production activity. Applied Surface Science, 2020, 500, 144009.	3.1	18
155	Formation of nanocrystalline graphite in polymer-derived SiCN by polymer infiltration and pyrolysis at a low temperature. Journal of Advanced Ceramics, 2021, 10, 1256-1272.	8.9	18
156	Engineering (Ni, Co, Mn) Se nanoarrays with 3D-Printed wave-structure carbon-rich lattice towards ultrahigh-capacity, complex-stress and all-climate energy storage. Carbon, 2022, 187, 375-385.	5.4	18
157	Microstructure and Properties of C/SiCâ€Diamond Composites Prepared by the Combination of CVI and RMI. Advanced Engineering Materials, 2019, 21, 1800765.	1.6	17
158	In Situ Irradiated X-ray Photoelectron Spectroscopy on the Ag-Zn _{0.5} Cd _{0.5} S Core–Shell Structure and the Hydrogen Production Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 6488-6495.	3.2	17
159	3D-Printed Topological MoS ₂ /MoSe ₂ Heterostructures for Macroscale Superlubricity. ACS Applied Materials & Interfaces, 2021, 13, 34984-34995.	4.0	17
160	A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature. Journal of Materials Science and Technology, 2022, 125, 29-37.	5.6	17
161	The Microstructure and Dielectric Properties of SiBCN Ceramics FabricatedÂVia LPCVD/CVI. Journal of the American Ceramic Society, 2015, 98, 2703-2706.	1.9	16
162	Mechanical and Electromagnetic Interference Shielding Behavior of C/SiC Composite Containing Ti ₃ SiC ₂ . Advanced Engineering Materials, 2018, 20, 1700590.	1.6	16

#	Article	IF	CITATIONS
163	Electromagnetic shielding properties of carbonâ€rich chemical vapor infiltrationâ€prone silicon carbide matrix composites. Journal of the American Ceramic Society, 2018, 101, 1991-1998.	1.9	16
164	Strengthening threeâ€dimensional printed ultraâ€light ceramic lattices. Journal of the American Ceramic Society, 2019, 102, 5082-5089.	1.9	16
165	A lightweight CNWs-SiO2/3Al2O3·2SiO2 porous ceramic with excellent microwave absorption and thermal insulation properties. Ceramics International, 2020, 46, 20395-20403.	2.3	16
166	Internal Friction Behavior of C/SiC Composites with Environmental Barrier Coatings in Corrosive Environment. International Journal of Applied Ceramic Technology, 2011, 8, 342-350.	1.1	15
167	Macroscopic carbon nanotube assembly/silicon carbide matrix composites produced by gas phase route. Advanced Composites and Hybrid Materials, 2019, 2, 142-150.	9.9	15
168	Electromagnetic interference shielding Ti3C2T -bonded carbon black films with enhanced absorption performance. Chinese Chemical Letters, 2020, 31, 1026-1029.	4.8	15
169	Enhanced impact resistance and electromagnetic interference shielding of carbon nanotubes films composites. Journal of Applied Polymer Science, 2021, 138, 50033.	1.3	15
170	Impedance matching optimization of SiCf/Si3N4–SiOC composites for excellent microwave absorption properties. Ceramics International, 2022, 48, 1889-1897.	2.3	15
171	Preparation and Properties of Selfâ€Healing Coating for C/SiC Brake Materials. International Journal of Applied Ceramic Technology, 2008, 5, 204-209.	1.1	14
172	Improved electromagnetic shielding properties of SiC/SiBCN modified by SiC nanowires. Ceramics International, 2019, 45, 24375-24381.	2.3	14
173	Design and fabrication of Al ₂ O ₃ <i>_f</i> /SiCN composite with excellent microwave absorbing and mechanical properties. Journal of the American Ceramic Society, 2020, 103, 6255-6264.	1.9	14
174	3DN C/SiC-MoS2 self-lubricating composites with high friction stability and excellent elevated-temperature lubrication. Journal of the European Ceramic Society, 2021, 41, 6815-6823.	2.8	14
175	Ablation Behavior of a Threeâ€Dimensional Carbon/Silicon Carbide Composite Nozzle in an Ethanol/Oxygen Combustion Gas Generator. International Journal of Applied Ceramic Technology, 2009, 6, 182-189.	1.1	13
176	Effects of Graphitization Degree in Threeâ€Dimensional Needled C/SiC Composites on Tribological Properties. International Journal of Applied Ceramic Technology, 2011, 8, 317-328.	1.1	13
177	Behavior of pure and modified carbon/carbon composites in atomic oxygen environment. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 190-195.	2.4	13
178	Tribological Behaviors of 3D Needled C/C–SiC and FeSi75 Modified C/C–SiC Brake Pair. Tribology Letters, 2017, 65, 1.	1.2	13
179	Strong and tough ZrB ₂ materials using a heterogeneous ceramic–metal layered architecture. Journal of the American Ceramic Society, 2019, 102, 5013-5019.	1.9	13
180	Synthesis of multifunctional foam-like isotropic high volume fraction SiC nanowires preform via a simple method. Ceramics International, 2021, 47, 9569-9577.	2.3	13

#	Article	IF	CITATIONS
181	Synthesis of embedded ZrC-SiC-C microspheres via carbothermal reduction for thermal stability and electromagnetic wave absorption. Applied Surface Science, 2022, 591, 153105.	3.1	13
182	Simulated Environments Testing System for Advanced Ceramic Matrix Composites. International Journal of Applied Ceramic Technology, 2006, 3, 252-257.	1.1	12
183	Thermal Cycling Damage Mechanisms of C/SiC Composites in Displacement Constraint and Oxidizing Atmosphere. Journal of the American Ceramic Society, 2006, 89, 060428035142011-???.	1.9	12
184	Realâ€Time Monitoring of Thermal Cycling Damage in Ceramic Matrix Composites Under a Constant Stress. Journal of the American Ceramic Society, 2007, 90, 2135-2142.	1.9	12
185	Prediction of Permeability for Chemical Vapor Infiltration. Journal of the American Ceramic Society, 2013, 96, 2445-2453.	1.9	12
186	The effects of Z-stitching density on thermophysical properties of plain woven carbon fiber reinforced silicon carbide composites. Ceramics International, 2015, 41, 283-290.	2.3	12
187	Modelling shear behaviors of 2D C/SiC z-pinned joint prepared by chemical vapor infiltration. Ceramics International, 2018, 44, 6433-6442.	2.3	12
188	Mechanical and Dielectric Properties of Two Types of Si3N4 Fibers Annealed at Elevated Temperatures. Materials, 2018, 11, 1498.	1.3	12
189	Microstructure and Properties of Diamond/SiC Composites Via Hot Molding Forming and CVI Densifying. Advanced Engineering Materials, 2019, 21, 1800640.	1.6	12
190	Excellent lubrication properties of 3D printed ceramic bionic structures. Ceramics International, 2020, 46, 23463-23470.	2.3	12
191	High-strength printed ceramic structures for higher temperature lubrication. Composites Part B: Engineering, 2021, 221, 109013.	5.9	12
192	High-strength, superhydrophilic/underwater superoleophobic multifunctional ceramics for high efficiency oil-water separation and water purification. Materials Today Nano, 2022, 18, 100199.	2.3	12
193	Activating lattice oxygen of two-dimensional MnXnâ^'1O2 MXenes via zero-dimensional graphene quantum dots for water oxidation. Science China Materials, 2022, 65, 3053-3061.	3.5	12
194	Thermophysical and Mechanical Properties of a Three-Dimensional Hi-Nicalon/SiC Composite. International Journal of Applied Ceramic Technology, 2006, 3, 75-79.	1.1	11
195	Tribological Properties of Short Fiber C/SiC Brake Materials and 30CrSiMoVA Mate. Tribology Letters, 2011, 43, 287-293.	1.2	11
196	Electromagnetic characteristics and microstructure stability of Nextel 610 fiber after heat treatment. Ceramics International, 2017, 43, 4630-4637.	2.3	11
197	Mechanical properties of carbon fiber reinforced bisphenol A dicyanate ester composites modified with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2017, 134, 45100.	1.3	11
198	Polyborosilazaneâ€Derived High Temperature Resistant SiBCNO. Advanced Engineering Materials, 2019, 21, 1801295.	1.6	11

#	Article	IF	CITATIONS
199	Thermophysical properties of three-dimensional ceramic-filler-modified carbon/carbon composites. Ceramics International, 2019, 45, 1302-1307.	2.3	11
200	A high-temperature structural and wave-absorbing SiC fiber reinforced Si3N4 matrix composites. Ceramics International, 2021, 47, 8191-8199.	2.3	11
201	Flexural Strength Distribution of 3D SiC/SiC Composite. Journal of Materials Engineering and Performance, 2006, 15, 712-716.	1.2	10
202	Experimental Simulation of the Space Re-Entry Environment for a Carbon/Silicon Carbide Compsite and the Effect on its Properties. Journal of the American Ceramic Society, 2007, 90, 2630-2633.	1.9	10
203	Thermodynamic Calculation of HfB2 Volatility Diagram. Journal of Phase Equilibria and Diffusion, 2011, 32, 422-427.	0.5	10
204	Effects of Residence Time and Reaction Conditions on the Deposition of SiC from Methyltrichlorosilane and Hydrogen. International Journal of Applied Ceramic Technology, 2012, 9, 642-649.	1.1	10
205	Modeling of Pore Structure Evolution Between Bundles of Plain Woven Fabrics During Chemical Vapor Infiltration Process: The Influence of Preform Geometry. Journal of the American Ceramic Society, 2013, 96, 51-61.	1.9	10
206	Effect of CVD ZrB2 coating thickness on anti-ablation performance of C/SiC composites. Ceramics International, 2018, 44, 8166-8175.	2.3	10
207	Ultra-thin MoS2 shell deposited on Ag nanowires for tuning surface-enhanced Raman spectroscopy. Applied Surface Science, 2018, 453, 120-125.	3.1	10
208	Relationship between microstructure and electromagnetic properties of SiC fibers. Journal of the American Ceramic Society, 2020, 103, 4352-4362.	1.9	10
209	Enhanced microwave absorption properties of polymer-derived SiC/SiCN composite ceramics modified by TiC. Journal of Materials Science: Materials in Electronics, 2021, 32, 25895-25907.	1.1	10
210	Effect of Carbon Precursors on the Microstructure and Bonding State of a Boron–Carbon Compound Grown by LPCVD. International Journal of Applied Ceramic Technology, 2008, 5, 305-312.	1.1	9
211	An investigation of the lowest reaction pathway of propeneÂ+ÂBCl3 decomposition in chemical vapor deposition process. Theoretical Chemistry Accounts, 2010, 127, 519-538.	0.5	9
212	Comparative Analysis of Low ycle Fatigue Behavior of 2D _f â€₽yC/SiC Composites in Different Environments. International Journal of Applied Ceramic Technology, 2015, 12, 491-499.	1.1	9
213	Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures. Materials, 2017, 10, 655.	1.3	9
214	In situ toughened twoâ€phase B ₁₂ (C, Si, B) ₃ –SiC ceramics fabricated via liquid silicon infiltration. Journal of the American Ceramic Society, 2019, 102, 2094-2103.	1.9	9
215	Designable Mechanical Properties of 3D Printing Composites with Multiple Filaments by Different Infill Percentages and Structures. Advanced Engineering Materials, 2019, 21, 1900508.	1.6	9
216	Carbon nanowires reinforced porous SiO2/3Al2O3·2SiO2 ceramics with tunable electromagnetic absorption properties. Ceramics International, 2019, 45, 11316-11324.	2.3	9

#	Article	IF	CITATIONS
217	Microstructure and Properties of Porous SiC Ceramics Modified by CVIâ€SiC Nanowires. Advanced Engineering Materials, 2019, 21, 1800653.	1.6	9
218	Adjusting the Morphology and Properties of SiC Nanowires by Catalyst Control. Materials, 2020, 13, 5179.	1.3	9
219	Thermodynamics of the Production of Condensed Phases in the CVD of Methyltrichlorosilane Pyrolysis. Chemical Vapor Deposition, 2009, 15, 281-290.	1.4	8
220	Effect of Temperature on the Microstructure of Boron Nitride Formed <i>In Situ</i> on Chemical Vaporâ€Deposited Boron in Ammonia Gas. Journal of the American Ceramic Society, 2011, 94, 679-682.	1.9	8
221	An Investigation of Environment Barrier Coating on 2D C/SiC Composites Prepared by Liquid Phase Process. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 692-698.	1.9	8
222	Erosion Behavior of <scp><scp>C/SiC</scp> Composites in Atomic Oxygen. International Journal of Applied Ceramic Technology, 2013, 10, 168-174.</scp>	1.1	8
223	Direct observation of structural and defect evolution in C-rich SiC using in situ helium ion microscopy. Nanoscale, 2016, 8, 762-765.	2.8	8
224	A reduced graphene oxide/bi-MOF-derived carbon composite as high-performance microwave absorber with tunable dielectric properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 11774-11783.	1.1	8
225	Synthesis of Si–C–N aligned nanofibers with preeminent electromagnetic wave absorption in ultra-broad band. Journal of Materials Chemistry C, 2021, 9, 16966-16977.	2.7	8
226	Thermal shock behavior of two-dimensional C/SiC composites in controlled atmospheres. Journal of Materials Science, 2005, 40, 4261-4265.	1.7	7
227	Effect of Water on Oxidation Behavior of 3-D C/SiC Composites Coated with SiC/a-BCx/SiC Coatings. Advanced Composite Materials, 2010, 19, 185-196.	1.0	7
228	Fabrication and mechanical behaviors of 2D C/SiC–BC _{<i>x</i>} composite at room temperature. Journal of Composite Materials, 2012, 46, 1251-1260.	1.2	7
229	Effect of SiC Particles on Mechanical Properties of Laminated (SiC _w +SiC _p)/SiC Ceramic Composites. International Journal of Applied Ceramic Technology, 2015, 12, 535-541.	1.1	7
230	Wet oxidation behavior of C/SiC–SiHf(B)CN composites at high temperature. Advanced Composites and Hybrid Materials, 2020, 3, 415-429.	9.9	7
231	Sandwich structure SiCf/Si3N4–SiOC–Si3N4 composites for high-temperature oxidation resistance and microwave absorption. Ceramics International, 2022, 48, 24803-24810.	2.3	7
232	Numerical Simulation of Effect of Methyltrichlorosilane Flux on Isothermal Chemical Vapor Infiltration Process of C/SiC Composites. Journal of the American Ceramic Society, 2006, 89, 060623005134016-???.	1.9	6
233	Thermal shock behavior of a three-dimensional SiC/SiC composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 3587-3592.	1.1	6
234	High-Load Friction Behavior of a Hinge Bearing Based on a Carbon/Silicon Carbide Composite. Journal of the American Ceramic Society, 2007, 90, 1139-1145.	1.9	6

#	Article	IF	CITATIONS
235	Compressive Properties and Fracture Behavior of Two-and-a-Half-Dimensional C/SiC Composites. International Journal of Applied Ceramic Technology, 2007, 4, 191-195.	1.1	6
236	Solid-state reactions of silicon carbide and chemical vapor deposited niobium. Journal of Coatings Technology Research, 2009, 6, 413-417.	1.2	6
237	Eu ³⁺ â€Doped YPO ₄ Selfâ€Monitoring Environmental Barrier Coating. Journal of the American Ceramic Society, 2011, 94, 3449-3454.	1.9	6
238	Reactivity of H2O and the Si-terminated surface of silicon carbide studied with ONIOM method. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	6
239	Effect of Braking Speed on Frictional Properties of Short Fiber C/C-SiC Brake Materials and Grey Cast Iron. Tribology Transactions, 2013, 56, 630-636.	1.1	6
240	Effects of heat treatment and coatings on the infrared emissivity properties of carbon fibers. Journal of Materials Research, 2014, 29, 1162-1167.	1.2	6
241	Influence of thermal shock and environment temperature on mechanical properties of C/SiC/GH783 joint brazed with Cu-TiÂ+ÂMo. Advanced Composites and Hybrid Materials, 2018, 1, 199-205.	9.9	6
242	Effects of Impedance and Dielectric Loss on the Electromagnetic Shielding Performance of an Ultrathin Carbon Nanotube Buckypaperâ€Reinforced Silicon Carbide Nanocomposite. Advanced Engineering Materials, 2021, 23, 2001487.	1.6	6
243	Effect of Yarn Sizes on the Tensile Damage Evolution of a C/SiC Composite Fabricated by Chemical Vapor Infiltration. Applied Composite Materials, 2011, 18, 165-174.	1.3	5
244	Reaction paths of BCl3Â+ÂCH4Â+ÂH2 in the chemical vapor deposition process. Structural Chemistry, 2012, 23, 1677-1692.	1.0	5
245	Quasi-static and dynamic compressive fracture behavior of SiCf/SiC composites. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 484-488.	0.4	5
246	Effect of the SiCl4 Flow Rate on SiBN Deposition Kinetics in SiCl4-BCl3-NH3-H2-Ar Environment. Materials, 2017, 10, 627.	1.3	5
247	Fabrication and Characterization of Short Silicon Nitride Fibers from Direct Nitridation of Ferrosilicon in N2 Atmosphere. Materials, 2018, 11, 2003.	1.3	5
248	Effects of alumina hollow microspheres on the properties of water-borne polyurethane films. Journal of Materials Research, 2018, 33, 2486-2493.	1.2	5
249	Stressâ€Oxidation Behavior of a Carbon/Silicon Carbide Composite in a Highâ€Temperature Combustion Environment. Journal of the American Ceramic Society, 2008, 91, 291-295.	1.9	4
250	Effect of C/B ratio in reactants on low-pressure CVD boron-doped carbon deposited from a BCl3–C3H6–H2 mixture. Journal of Coatings Technology Research, 2009, 6, 509-515.	1.2	4
251	Friction of a C/SiC Composite Bearing in Air and in Combustion Environments. International Journal of Applied Ceramic Technology, 2009, 6, 171-181.	1.1	4
252	Effect of Temperature on Stress Oxidation Behaviors of 2D C/SiC-BC x Composite in Wet Oxygen Atmosphere. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5699-5707.	1.1	4

#	Article	IF	CITATIONS
253	Thermodynamic study on the chemical vapor deposition of boron nitride from the BCl3–NH3–H2 system. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	4
254	Thermodynamic analysis of chemical vapor deposition of BCl3-NH3-SiCl4-H2-Ar system. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 951-958.	0.4	4
255	Decomposition reaction rate of BCl3–CH4–H2 in the gas phase. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	4
256	Dynamic pseudoplastic behavior of laminated ceramics with soft and hard interbedded dense layers. Materials Letters, 2015, 152, 268-271.	1.3	4
257	Effect of Temperature on Oxidation Behavior of 3â€Dimensional <scp>C</scp> / <scp>S</scp> i <scp>C</scp> Composites Coated by Different Structural <scp>S</scp> i <scp>C</scp> and aâ€ <scp>BC</scp> _x Coatings in Static Wet Oxygen Atmosphere, International Journal of Applied Ceramic Technology, 2015, 12, 363-370.	1.1	4
258	Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level. Materials, 2016, 9, 1011.	1.3	4
259	Porous SiC Ceramics with Controlled Pores by CVI and Oxidation Consumption Processing. Materials and Manufacturing Processes, 2016, 31, 182-185.	2.7	4
260	Effects of heat treatment temperatures on microstructures and mechanical properties of the chopped carbon fibres SiC composites. Advances in Applied Ceramics, 2018, 117, 389-394.	0.6	4
261	Microstructure and Tribological Behavior of Al2O3 Particle Reinforced Al Matrix Composites Fabricated by Spark Plasma Sintering. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1013-1017.	0.4	4
262	Effect of E-44 Epoxy Resin and Pyrolysis Temperature on the Adhesion Strength of SiBCN Ceramic. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 81-86.	0.4	4
263	Microstructure and mechanical properties of Zr3Al3C5-based ceramics synthesized by Al-Si melt infiltration. Journal of Advanced Ceramics, 2021, 10, 529-536.	8.9	4
264	Residual Strength Prediction of SiC/SiC Composite Exposed to Service Environments with Factor Analysis Method. International Journal of Applied Ceramic Technology, 2007, 4, 285-290.	1.1	3
265	UV curing kinetics and mechanism of a highly branched polycarbosilane. Applied Organometallic Chemistry, 2009, 23, 44-49.	1.7	3
266	Design, Fabrication, and Characterization of Silicon Nitride Particleâ€Reinforced Silicon Nitride Matrix Composites by Chemical Vapor Infiltration. International Journal of Applied Ceramic Technology, 2010, 7, 63-70.	1.1	3
267	Thermodynamics investigation of the gas-phase reactions in the chemical vapor deposition of silicon borides with BCl3–SiCl4–H2 precursors. Structural Chemistry, 2014, 25, 1369-1384.	1.0	3
268	The comparison of microstructure and oxidation behaviors of (SiC-C)/PyC/SiC and C/PyCHT/SiC composites in air. Science and Engineering of Composite Materials, 2015, 22, .	0.6	3
269	Fabrication and Characteristic of Nextel 720 Fiberâ€Reinforced Silicon Nitride Matrix Composites by Chemical Vapor Infiltration Process. International Journal of Applied Ceramic Technology, 2015, 12, 529-534.	1.1	3
270	Ceramic nanocomposites reinforced with a high volume fraction of carbon nanotubes. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 47-50.	0.4	3

#	Article	IF	CITATIONS
271	Hydrogen Evolution: 2D‣ayered Carbon/TiO ₂ Hybrids Derived from Ti ₃ C ₂ <i>MXenes</i> for Photocatalytic Hydrogen Evolution under Visible Light Irradiation (Adv. Mater. Interfaces 20/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	3
272	Effects of thermal oxidising exposure on the tensile strength of Hi-Nicalon fibres. Advances in Applied Ceramics, 2018, 117, 243-247.	0.6	3
273	A simple recoating repair methodology to improve oxidation resistance of C/SiCs. Advances in Applied Ceramics, 2018, 117, 347-353.	0.6	3
274	Strengthening of C/SiC Composites by Electrophoretic Deposition of CNTs on a SiC Coating. Journal of Materials Engineering and Performance, 2018, 27, 5762-5768.	1.2	3
275	Microstructure and Mechanical Properties of Si3N4-Fe3Si Composites Prepared by Gas-Pressure Sintering. Materials, 2018, 11, 1206.	1.3	3
276	Microstructure and Dielectric Property of 3D BNf/Si3N4 Fabricated by CVI Process. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 818-823.	0.4	3
277	Effects of Pore on Thermal Diffusivity and Thermal Radiation Properties of C/SiC Composites at High Temperatures. Applied Composite Materials, 2019, 26, 1411-1422.	1.3	3
278	Ablation Behavior of Zr–Al(Si)–C Layered Carbides Modified 3D Needled C/SiC Composites. Advanced Engineering Materials, 2019, 21, 1800936.	1.6	3
279	Dielectric and microwave absorption properties of polymerâ€derived TiC/SiC/SiOC multiphase ceramics in X band. International Journal of Applied Ceramic Technology, 0, , .	1.1	3
280	Modeling the Effects of Reactor Inlet Configuration on Isothermal CVI Process of C/SiC Composites. International Journal of Applied Ceramic Technology, 2007, 4, 578-584.	1.1	2
281	Effects of Carbon Yarn Size on the Mechanical Properties of Plain Woven C/SiC Composites. International Journal of Applied Ceramic Technology, 2009, 6, E1.	1.1	2
282	Characterization of the Microstructure of Threeâ€Dimensionalâ€Needled Carbon/Silicon Carbide Composites. International Journal of Applied Ceramic Technology, 2010, 7, 821-829.	1.1	2
283	Viscous Flow of Silica and its Effects on Ablation of Carbon/Silicon Carbide Composites as a Liquid-Fueled Rocket Engine Nozzle. International Journal of Applied Ceramic Technology, 2011, 8, 1468-1474.	1.1	2
284	Numerical Analysis of the Microstructure-based Model for Layered Composites via MC and FEM Approaches. Brazilian Journal of Physics, 2016, 46, 87-96.	0.7	2
285	Effects of Cyclic Loading and Temperature on a SiC-Coated Carbon/Carbon Composite in a Combustion Environment. Journal of the American Ceramic Society, 2008, 91, 3634-3637.	1.9	1
286	Reaction mechanism and microstructure evolution of reaction sintered h-BN. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 345-348.	0.4	1
287	Thermodynamic study and preparation of Si–B–N ceramic coating by LPCVD from SiCl4–NH3–BCl3–H2–Ar system. Journal of Materials Research, 2017, 32, 3801-3810.	1.2	1
288	A Numerical Study of Densification Behavior of Silicon Carbide Matrix Composites in Isothermal Chemical Vapor Infiltration. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1365-1371.	0.4	1

#	Article	IF	CITATIONS
289	Response of Silicon Nitride Ceramics under High-enthalpy Plasma Flows. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 828-835.	0.4	1
290	Evolution of the composition, microstructure and electromagnetic properties of HfOC ceramics with pyrolysis temperature. Ceramics International, 2022, 48, 16630-16637.	2.3	1
291	Modification of C/SIC Composites using Partial Boron Carbide Self-Sealing Matrix by ICVI. Advanced Composites Letters, 2008, 17, 096369350801700.	1.3	0
292	Electronic structure of SiC (310) twin boundary doped with B, N, Al and Ti. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 599-602.	0.4	0
293	Approach to evaluation of the overall strengthening and toughening effect of continuous fiber-reinforced ceramic matrix composites. International Journal of Materials Research, 2014, 105, 365-368.	0.1	Ο
294	Effect of raw materials on the pore morphologies of carbon foams prepared through templating method. Advances in Applied Ceramics, 2015, 114, 442-447.	0.6	0
295	Effect of Dimension Parameters on the Torsion Property of A C/SiC Pipe. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 389-393.	0.4	0
296	Editorial of the Special Section on the Occasion of the 80ths Birthday of Prof. Litong Zhang. Advanced Engineering Materials, 2019, 21, 1900353.	1.6	0
297	Thermodynamics equilibrium analysis on the chemical vapor deposition of HfC as coatings for ceramic matrix composites with HfClx(x = 2–4)-CyHz(CH4, C2H4 and C3H6)-H2-Ar system. Advanced Compos and Hybrid Materials, 2019, 2, 102-114.	ites9	0
298	The influence of substrate morphology on the thermal radiation properties of SiC coating. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	0
299	Microwave absorption design of water by the combination of dipole polarization and interfacial polarization. Journal of Materials Science: Materials in Electronics, 2022, 33, 6411-6420.	1.1	0
300	Fiber reinforced SiC ceramic helical spring for high elasticity and large deformation at high temperature. International Journal of Applied Ceramic Technology, 2022, 19, 1583-1593.	1.1	0
301	Rationally Printed Continuous Optical Fibers To Realize Internal Light-Activated Catalysis with Less Irradiation Dissipation. ACS Sustainable Chemistry and Engineering, 2022, 10, 6807-6816.	3.2	0