Marc J Tetel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7105980/publications.pdf Version: 2024-02-01

MARC | TETEL

#	Article	IF	CITATIONS
1	Endocrine Disruption and the Gut Microbiome. , 2022, , 355-376.		3
2	Distinct Changes in Gut Microbiota Are Associated with Estradiol-Mediated Protection from Diet-Induced Obesity in Female Mice. Metabolites, 2021, 11, 499.	1.3	15
3	Gut and vaginal microbiomes on steroids: implications for women's health. Trends in Endocrinology and Metabolism, 2021, 32, 554-565.	3.1	29
4	Dopamineâ€induced interactions of female mouse hypothalamic proteins with progestin receptorâ€A in the absence of hormone. Journal of Neuroendocrinology, 2020, 32, e12904.	1.2	0
5	Daily Vaginal Microbiota Fluctuations Associated with Natural Hormonal Cycle, Contraceptives, Diet, and Exercise. MSphere, 2020, 5, .	1.3	95
6	Estradiol and high fat diet associate with changes in gut microbiota in female ob/ob mice. Scientific Reports, 2019, 9, 20192.	1.6	45
7	SUN-092 Distinct Changes in Gut Microbiota Are Associated with Estradiol-Mediated Protection from Diet-Induced Obesity in Female Mice. Journal of the Endocrine Society, 2019, 3, .	0.1	0
8	SUN-474 Estradiol Protects Against High-Fat Diet-Induced Obesity and Anxiety in Female Mice. Journal of the Endocrine Society, 2019, 3, .	0.1	0
9	SUN-198 Vaginal Microbial Diversity Changes across the Menstrual Cycle in Healthy Young Women. Journal of the Endocrine Society, 2019, 3, .	0.1	0
10	Steroids, stress and the gut microbiomeâ€brain axis. Journal of Neuroendocrinology, 2018, 30, e12548.	1.2	119
11	Steroid Receptor Coactivator Family. , 2018, , 5182-5187.		0
12	The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent. ENeuro, 2017, 4, ENEURO.0272-17.2017.	0.9	20
13	Adult Neurogenesis in the Female Mouse Hypothalamus: Estradiol and High-Fat Diet Alter the Generation of Newborn Neurons Expressing Estrogen Receptor α. ENeuro, 2016, 3, ENEURO.0027-16.2016.	0.9	25
14	Estradiol Preferentially Induces Progestin Receptor-A (PR-A) Over PR-B in Cells Expressing Nuclear Receptor Coactivators in the Female Mouse Hypothalamus. ENeuro, 2015, 2, ENEURO.0012-15.2015.	0.9	16
15	Neuroactive steroids and the peripheral nervous system: An update. Steroids, 2015, 103, 23-30.	0.8	46
16	The 2014 FUN Achievement Award. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2015, 13, E11-3.	0.6	0
17	Rewards and Challenges of a Career in Research and Teaching at a Liberal Arts College. Endocrinology, 2014, 155, 4133-4136.	1.4	2
18	Oestradiol and Diet Modulate Energy Homeostasis and Hypothalamic Neurogenesis in the Adult Female Mouse. Journal of Neuroendocrinology, 2014, 26, 805-816.	1.2	36

Marc J Tetel

#	Article	IF	CITATIONS
19	Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells. Pharmacological Research, 2014, 79, 13-20.	3.1	38
20	Nuclear Receptor Coactivators: Regulators of Steroid Action in Brain and Behaviour. Journal of Neuroendocrinology, 2013, 25, 1209-1218.	1.2	32
21	Convergence of Multiple Mechanisms of Steroid Hormone Action. Hormone and Metabolic Research, 2012, 44, 569-576.	0.7	50
22	Neuropeptidase activity is down-regulated by estradiol in steroid-sensitive regions of the hypothalamus in female mice. Neuropeptides, 2012, 46, 167-172.	0.9	6
23	Anatomically‧pecific Actions of Oestrogen Receptor in the Developing Female Rat Brain: Effects of Oestradiol and Selective Oestrogen Receptor Modulators on Progestin Receptor Expression. Journal of Neuroendocrinology, 2012, 24, 285-291.	1.2	7
24	Nuclear Receptor Coactivators Are Coexpressed with Steroid Receptors and Regulated by Estradiol in Mouse Brain. Neuroendocrinology, 2011, 94, 49-57.	1.2	34
25	Nuclear Thimet Oligopeptidase is Coexpressed with Oestrogen Receptor α in Hypothalamic Cells and Regulated by Oestradiol in Female Mice. Journal of Neuroendocrinology, 2010, 22, 936-943.	1.2	9
26	Contributions of estrogen receptor-α and estrogen receptor-β to the regulation of behavior. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 1084-1089.	1.1	55
27	Steroid receptor coactivator-2 expression in brain and physical associations with steroid receptors. Neuroscience, 2010, 169, 1017-1028.	1.1	41
28	Modulation of steroid action in the central and peripheral nervous systems by nuclear receptor coactivators. Psychoneuroendocrinology, 2009, 34, S9-S19.	1.3	20
29	Who's in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Frontiers in Neuroendocrinology, 2009, 30, 328-342.	2.5	72
30	Nuclear Receptor Coactivators: Essential Players for Steroid Hormone Action in the Brain and in Behaviour. Journal of Neuroendocrinology, 2009, 21, 229-237.	1.2	54
31	Steroid Receptor Coactivator-1 from Brain Physically Interacts Differentially with Steroid Receptor Subtypes. Endocrinology, 2008, 149, 5272-5279.	1.4	45
32	Estrogen Receptor (ER) β Modulates ERα Responses to Estrogens in the Developing Rat Ventromedial Nucleus of the Hypothalamus. Endocrinology, 2008, 149, 4615-4621.	1.4	38
33	Effects of anabolic androgenic steroids on the development and expression of running wheel activity and circadian rhythms in male rats. Physiology and Behavior, 2007, 92, 1010-1018.	1.0	54
34	Cells in Behaviourally Relevant Brain Regions Coexpress Nuclear Receptor Coactivators and Ovarian Steroid Receptors. Journal of Neuroendocrinology, 2007, 19, 262-271.	1.2	30
35	Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats. Hormones and Behavior, 2006, 50, 383-392.	1.0	72
36	Photoperiodic regulation of androgen receptor and steroid receptor coactivator-1 in Siberian hamster brain. Molecular Brain Research, 2004, 131, 79-87.	2.5	40

Marc J Tetel

#	Article	IF	CITATIONS
37	Nuclear Receptor Coactivator Function in Reproductive Physiology and Behavior1. Biology of Reproduction, 2003, 69, 1449-1457.	1.2	44
38	Expression of the Nuclear Receptor Coactivator, cAMP Response Element-Binding Protein, Is Sexually Dimorphic and Modulates Sexual Differentiation of Neonatal Rat Brain. Endocrinology, 2002, 143, 3009-3016.	1.4	84
39	Nuclear Receptor Coactivators Modulate Hormone-Dependent Gene Expression in Brain and Female Reproductive Behavior in Rats. Endocrinology, 2002, 143, 436-444.	1.4	128
40	Nuclear Receptor Coactivators in Neuroendocrine Function. Journal of Neuroendocrinology, 2001, 12, 927-932.	1.2	31
41	Coexpression of ERβ with ERα and Progestin Receptor Proteins in the Female Rat Forebrain: Effects of Estradiol Treatment. Endocrinology, 2001, 142, 5172-5181.	1.4	181
42	Coexpression of ERÂ with ERÂ and Progestin Receptor Proteins in the Female Rat Forebrain: Effects of Estradiol Treatment. Endocrinology, 2001, 142, 5172-5181.	1.4	61
43	Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7551-7555.	3.3	192
44	Hormone-Dependent Interaction between the Amino- and Carboxyl-Terminal Domains of Progesterone Receptor in Vitro and in Vivo. Molecular Endocrinology, 1999, 13, 910-924.	3.7	161
45	Hormone-Dependent Interaction between the Amino- and Carboxyl-Terminal Domains of Progesterone Receptor in Vitro and in Vivo. Molecular Endocrinology, 1999, 13, 910-924.	3.7	61
46	Hinge and Amino-Terminal Sequences Contribute to Solution Dimerization of Human Progesterone Receptor. Molecular Endocrinology, 1997, 11, 1114-1128.	3.7	70
47	Neurobiological regulation of hormonal response by progestin and estrogen receptors. , 1995, , 324-349.		5
48	Hypothalamic ovarian steroid hormone-sensitive neurons involved in female sexual behavior. Psychoneuroendocrinology, 1994, 19, 505-516.	1.3	47
49	Intraneuronal Convergence of Tactile and Hormonal Stimuli Associated with Female Reproduction in Rats. Journal of Neuroendocrinology, 1994, 6, 211-216.	1.2	52
50	Estradiol and progesterone influence the response of ventromedial hypothalamic neurons to tactile stimuli associated with female reproduction. Brain Research, 1994, 646, 267-272.	1.1	46
51	Fos Expression in the Rat Brain Following Vaginal-Cervical Stimulation by Mating and Manual Probing. Journal of Neuroendocrinology, 1993, 5, 397-404.	1.2	158
52	Heterogeneous Regulation of Steroid Hormone Receptors in the Brain. American Zoologist, 1993, 33, 219-228.	0.7	5
53	Immunocytochemical evidence for noradrenergic regulation of estrogen receptor concentrations in the guinea pig hypothalamus. Brain Research, 1991, 565, 321-329.	1.1	29
54	Expression of the Nuclear Receptor Coactivator, cAMP Response Element-Binding Protein, Is Sexually Dimorphic and Modulates Sexual Differentiation of Neonatal Rat Brain O		31