
Ana M Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7105873/publications.pdf Version: 2024-02-01

ΔΝΑ Μ SOTO

#	Article	IF	CITATIONS
1	Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocrine Reviews, 2009, 30, 293-342.	8.9	3,491
2	Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocrine Reviews, 2012, 33, 378-455.	8.9	2,413
3	Bisphenol-A and the Great Divide: A Review of Controversies in the Field of Endocrine Disruption. Endocrine Reviews, 2009, 30, 75-95.	8.9	1,167
4	Endocrine disruptors and reproductive health: The case of bisphenol-A. Molecular and Cellular Endocrinology, 2006, 254-255, 179-186.	1.6	530
5	Environmental causes of cancer: endocrine disruptors as carcinogens. Nature Reviews Endocrinology, 2010, 6, 363-370.	4.3	445
6	Perinatal Exposure to Bisphenol-A Alters Peripubertal Mammary Gland Development in Mice. Endocrinology, 2005, 146, 4138-4147.	1.4	392
7	Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertility and Sterility, 2008, 90, 911-940.	0.5	379
8	Comparison of Short-Term Estrogenicity Tests for Identification of Hormone-Disrupting Chemicals. Environmental Health Perspectives, 1999, 107, 89-108.	2.8	374
9	In Utero Exposure to Bisphenol A Alters the Development and Tissue Organization of the Mouse Mammary Gland1. Biology of Reproduction, 2001, 65, 1215-1223.	1.2	360
10	The stroma as a crucial target in rat mammary gland carcinogenesis. Journal of Cell Science, 2004, 117, 1495-1502.	1.2	359
11	A review of the carcinogenic potential of bisphenol A. Reproductive Toxicology, 2016, 59, 167-182.	1.3	336
12	Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow Environmental Health Perspectives, 2004, 112, 353-358.	2.8	309
13	Prenatal Bisphenol A Exposure Induces Preneoplastic Lesions in the Mammary Gland in Wistar Rats. Environmental Health Perspectives, 2007, 115, 80-86.	2.8	286
14	Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reproductive Toxicology, 2007, 23, 383-390.	1.3	284
15	Evidence of Altered Brain Sexual Differentiation in Mice Exposed Perinatally to Low, Environmentally Relevant Levels of Bisphenol A. Endocrinology, 2006, 147, 3681-3691.	1.4	277
16	Why Public Health Agencies Cannot Depend on Good Laboratory Practices as a Criterion for Selecting Data: The Case of Bisphenol A. Environmental Health Perspectives, 2009, 117, 309-315.	2.8	268
17	The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. BioEssays, 2011, 33, 332-340.	1.2	261
18	Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in Eastern Nebraska, USA Environmental Health Perspectives, 2004, 112, 346-352.	2.8	254

#	Article	IF	CITATIONS
19	The somatic mutation theory of cancer: growing problems with the paradigm?. BioEssays, 2004, 26, 1097-1107.	1.2	254
20	An evaluation of evidence for the carcinogenic activity of bisphenol A. Reproductive Toxicology, 2007, 24, 240-252.	1.3	249
21	Exposure to Environmentally Relevant Doses of the Xenoestrogen Bisphenol-A Alters Development of the Fetal Mouse Mammary Gland. Endocrinology, 2007, 148, 116-127.	1.4	245
22	The role of estrogens on the proliferation of human breast tumor cells (MCF-7). The Journal of Steroid Biochemistry, 1985, 23, 87-94.	1.3	231
23	Bisphenol A: Perinatal exposure and body weight. Molecular and Cellular Endocrinology, 2009, 304, 55-62.	1.6	226
24	Minireview: Endocrine Disruptors: Past Lessons and Future Directions. Molecular Endocrinology, 2016, 30, 833-847.	3.7	201
25	Long-Term Effects of Fetal Exposure to Low Doses of the Xenoestrogen Bisphenol-A in the Female Mouse Genital Tract1. Biology of Reproduction, 2005, 72, 1344-1351.	1.2	199
26	Theories of carcinogenesis: An emerging perspective. Seminars in Cancer Biology, 2008, 18, 372-377.	4.3	195
27	Perinatal Exposure to Environmentally Relevant Levels of Bisphenol A Decreases Fertility and Fecundity in CD-1 Mice. Environmental Health Perspectives, 2011, 119, 547-552.	2.8	181
28	Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs. Evolution & Development, 2003, 5, 67-75.	1,1	176
29	Low dose effects of bisphenol A. Endocrine Disruptors (Austin, Tex), 2013, 1, e26490.	1.1	174
30	Endocrine disruptors: from Wingspread to environmental developmental biology. Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 235-244.	1.2	173
31	Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reproductive Toxicology, 2013, 38, 1-15.	1.3	172
32	Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice Environmental Health Perspectives, 2003, 111, 309-319.	2.8	166
33	Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice. Reproductive Toxicology, 2008, 26, 210-219.	1.3	156
34	Perinatally Administered Bisphenol A as a Potential Mammary Gland Carcinogen in Rats. Environmental Health Perspectives, 2013, 121, 1040-1046.	2.8	149
35	Somatic mutation theory of carcinogenesis: Why it should be dropped and replaced. Molecular Carcinogenesis, 2000, 29, 205-211.	1.3	142
36	Bisphenol A alters the development of the rhesus monkey mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8190-8195.	3.3	140

#	Article	IF	CITATIONS
37	Does Cancer Start in the Womb? Altered Mammary Gland Development and Predisposition to Breast Cancer due to in Utero Exposure to Endocrine Disruptors. Journal of Mammary Gland Biology and Neoplasia, 2013, 18, 199-208.	1.0	138
38	Cell Proliferation of Estrogen-Sensitive Cells: The Case for Negative Control*. Endocrine Reviews, 1987, 8, 44-52.	8.9	136
39	Does Breast Cancer Start in the Womb?. Basic and Clinical Pharmacology and Toxicology, 2008, 102, 125-133.	1.2	136
40	A Novel 3D <i>In Vitro</i> Culture Model to Study Stromal–Epithelial Interactions in the Mammary Gland. Tissue Engineering - Part C: Methods, 2008, 14, 261-271.	1.1	134
41	Stromal Regulation of Neoplastic Development. American Journal of Pathology, 2005, 167, 1405-1410.	1.9	131
42	Prenatal Exposure to Low Doses of Bisphenol A Alters the Periductal Stroma and Glandular Cell Function in the Rat Ventral Prostate1. Biology of Reproduction, 2001, 65, 1271-1277.	1.2	129
43	Effects of Low Doses of Bisphenol A on the Metabolome of Perinatally Exposed CD-1 Mice. Environmental Health Perspectives, 2013, 121, 586-593.	2.8	129
44	Emergentism as a default: Cancer as a problem of tissue organization. Journal of Biosciences, 2005, 30, 103-118.	0.5	121
45	Androgen-Induced Inhibition of Proliferation in Human Breast Cancer MCF7 Cells Transfected with Androgen Receptor*. Endocrinology, 1997, 138, 1406-1412.	1.4	117
46	Perinatal Bisphenol A Exposure Increases Estrogen Sensitivity of the Mammary Gland in Diverse Mouse Strains. Environmental Health Perspectives, 2007, 115, 592-598.	2.8	105
47	Strengths and weaknesses of in vitro assays for estrogenic and androgenic activity. Best Practice and Research in Clinical Endocrinology and Metabolism, 2006, 20, 15-33.	2.2	104
48	Scientific Challenges in the Risk Assessment of Food Contact Materials. Environmental Health Perspectives, 2017, 125, 095001.	2.8	101
49	Impacts of food contact chemicals on human health: a consensus statement. Environmental Health, 2020, 19, 25.	1.7	100
50	The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer, 2010, 10, 263.	1.1	99
51	The aging of the 2000 and 2011 Hallmarks of Cancer reviews: A critique. Journal of Biosciences, 2013, 38, 651-663.	0.5	91
52	The Proliferative Effect of "Anti-Androgens―on the Androgen-Sensitive Human Prostate Tumor Cell Line LNCaP. Endocrinology, 1990, 126, 1457-1463.	1.4	90
53	The mammary gland response to estradiol: Monotonic at the cellular level, non-monotonic at the tissue-level of organization?. Journal of Steroid Biochemistry and Molecular Biology, 2006, 101, 263-274.	1.2	88
54	Prenatal Exposure to BPA Alters the Epigenome of the Rat Mammary Gland and Increases the Propensity to Neoplastic Development. PLoS ONE, 2014, 9, e99800.	1.1	85

#	Article	IF	CITATIONS
55	Estrogens in the wrong place at the wrong time: Fetal BPA exposure and mammary cancer. Reproductive Toxicology, 2015, 54, 58-65.	1.3	84
56	Carcinogenesis explained within the context of a theory of organisms. Progress in Biophysics and Molecular Biology, 2016, 122, 70-76.	1.4	80
57	Low-Dose BPA Exposure Alters the Mesenchymal and Epithelial Transcriptomes of the Mouse Fetal Mammary Gland. PLoS ONE, 2013, 8, e63902.	1.1	75
58	Mechanism of estrogen action on cellular proliferation: Evidence for indirect and negative control on cloned breast tumor cells. Biochemical and Biophysical Research Communications, 1984, 122, 1097-1103.	1.0	72
59	The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model. Biomaterials, 2010, 31, 3622-3630.	5.7	71
60	Neoplasia as development gone awry: the role of endocrine disruptors. Journal of Developmental and Physical Disabilities, 2008, 31, 288-293.	3.6	63
61	Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: The addition of peripubertal exposure exacerbates adverse effects in female mice. Reproductive Toxicology, 2017, 68, 130-144.	1.3	63
62	Importance of dosage standardization for interpreting transcriptomal signature profiles: Evidence from studies of xenoestrogens. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12033-12038.	3.3	60
63	Identification and characterization of membrane estrogen receptor from MCF7 estrogen-target cells. Journal of Steroid Biochemistry and Molecular Biology, 2001, 77, 97-108.	1.2	58
64	The male mammary gland: A target for the xenoestrogen bisphenol A. Reproductive Toxicology, 2013, 37, 15-23.	1.3	58
65	Human serum albumin shares the properties of estrocolyone-I, the inhibitor of the proliferation of estrogen-target cells. Journal of Steroid Biochemistry and Molecular Biology, 1996, 59, 147-154.	1.2	53
66	The Death of the Cancer Cell. Cancer Research, 2011, 71, 4334-4337.	0.4	52
67	Rapid three-dimensional quantification of voxel-wise collagen fiber orientation. Biomedical Optics Express, 2015, 6, 2294.	1.5	52
68	Competing views on cancer. Journal of Biosciences, 2014, 39, 281-302.	0.5	49
69	Interlaboratory Comparison of Four in Vitro Assays for Assessing Androgenic and Antiandrogenic Activity of Environmental Chemicals. Environmental Health Perspectives, 2004, 112, 695-702.	2.8	49
70	In search of principles for a Theory of Organisms. Journal of Biosciences, 2015, 40, 955-968.	0.5	48
71	Expression of novel genes linked to the androgen-induced, proliferative shutoff in prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 1997, 63, 211-218.	1.2	47
72	Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals Environmental Health Perspectives, 2004, 112, 695-702.	2.8	46

#	Article	IF	CITATIONS
73	The effect of stromal components on the modulation of the phenotype of human bronchial epithelial cells in 3D culture. Biomaterials, 2011, 32, 7169-7180.	5.7	46
74	Over a century of cancer research: Inconvenient truths and promising leads. PLoS Biology, 2020, 18, e3000670.	2.6	46
75	DDT, endocrine disruption and breast cancer. Nature Reviews Endocrinology, 2015, 11, 507-508.	4.3	44
76	Modeling mammary organogenesis from biological first principles: Cells and their physical constraints. Progress in Biophysics and Molecular Biology, 2016, 122, 58-69.	1.4	43
77	The Case for BPA as an Obesogen: Contributors to the Controversy. Frontiers in Endocrinology, 2019, 10, 30.	1.5	43
78	Androgen-Induced Inhibition of Proliferation in Human Breast Cancer MCF7 Cells Transfected with Androgen Receptor. , 0, .		43
79	Dynamic Metabolic Disruption in Rats Perinatally Exposed to Low Doses of Bisphenol-A. PLoS ONE, 2015, 10, e0141698.	1.1	43
80	Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reproductive Toxicology, 2020, 98, 29-60.	1.3	42
81	Developing a Marker of Exposure to Xenoestrogen Mixtures in Human Serum. Environmental Health Perspectives, 1997, 105, 647.	2.8	41
82	Evidence of Absence: Estrogenicity Assessment of a New Food-Contact Coating and the Bisphenol Used in Its Synthesis. Environmental Science & Technology, 2017, 51, 1718-1726.	4.6	40
83	The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms. Progress in Biophysics and Molecular Biology, 2016, 122, 16-23.	1.4	39
84	From Single Cells to Tissues: Interactions between the Matrix and Human Breast Cells in Real Time. PLoS ONE, 2014, 9, e93325.	1.1	39
85	Toward a theory of organisms: Three founding principles in search of a useful integration. Progress in Biophysics and Molecular Biology, 2016, 122, 77-82.	1.4	38
86	Plausibility of stromal initiation of epithelial cancers without a mutation in the epithelium: a computer simulation of morphostats. BMC Cancer, 2009, 9, 89.	1.1	34
87	Why do we need theories?. Progress in Biophysics and Molecular Biology, 2016, 122, 4-10.	1.4	34
88	Assays to Measure Estrogen and Androgen Agonists and Antagonists. Advances in Experimental Medicine and Biology, 1998, 444, 9-28.	0.8	31
89	One hundred years of somatic mutation theory of carcinogenesis: Is it time to switch?. BioEssays, 2014, 36, 118-120.	1.2	30
90	New insights into fetal mammary gland morphogenesis: differential effects of natural and environmental estrogens. Scientific Reports, 2017, 7, 40806.	1.6	30

#	Article	IF	CITATIONS
91	Glycemia Regulation: From Feedback Loops to Organizational Closure. Frontiers in Physiology, 2020, 11, 69.	1.3	29
92	3D organizational mapping of collagen fibers elucidates matrix remodeling in a hormone-sensitive 3D breast tissue model. Biomaterials, 2018, 179, 96-108.	5.7	28
93	Safeguarding Female Reproductive Health Against Endocrine Disrupting Chemicals—The FREIA Project. International Journal of Molecular Sciences, 2020, 21, 3215.	1.8	28
94	Effects of interaction between estradiol-17? and progesterone on the proliferation of cloned breast tumor cells (MCF-7 and T47D). Journal of Cellular Physiology, 1985, 124, 386-390.	2.0	26
95	Identification of human estrogen-inducible transcripts that potentially mediate the apoptotic response in breast cancer. Journal of Steroid Biochemistry and Molecular Biology, 2000, 72, 89-102.	1.2	26
96	Cancer Metastases: So Close and So Far. Journal of the National Cancer Institute, 2015, 107, djv236.	3.0	26
97	A Combined Morphometric and Statistical Approach to Assess Nonmonotonicity in the Developing Mammary Gland of Rats in the CLARITY-BPA Study. Environmental Health Perspectives, 2020, 128, 57001.	2.8	26
98	Mechanism of Androgen Action on Cell Proliferation: AS3 Protein as a Mediator of Proliferative Arrest in the Rat Prostate. Endocrinology, 2002, 143, 2708-2714.	1.4	25
99	A plasma-borne specific inhibitor of the proliferation of human estrogen-sensitive breast tumor cells (estrocolyone-l). Journal of Steroid Biochemistry and Molecular Biology, 1992, 43, 703-712.	1.2	24
100	Interpreting endocrine disruption from an integrative biology perspective. Molecular and Cellular Endocrinology, 2009, 304, 3-7.	1.6	24
101	Is systems biology a promising approach to resolve controversies in cancer research?. Cancer Cell International, 2012, 12, 12.	1.8	24
102	Preface to "From the century of the genome to the century of the organism: New theoretical approaches― Progress in Biophysics and Molecular Biology, 2016, 122, 1-3.	1.4	24
103	Hormonal Regulation of Epithelial Organization in a Three-Dimensional Breast Tissue Culture Model. Tissue Engineering - Part C: Methods, 2014, 20, 42-51.	1.1	23
104	Emergentism by default: A view from the bench. SynthÈse, 2006, 151, 361-376.	0.6	20
105	Dual Regulation of Breast Tubulogenesis Using Extracellular Matrix Composition and Stromal Cells. Tissue Engineering - Part A, 2012, 18, 520-532.	1.6	20
106	Bisphenol A Exposure Disrupts Neurotransmitters Through Modulation of Transaminase Activity in the Brain of Rodents. Endocrinology, 2016, 157, 1736-1739.	1.4	20
107	Systems biology and cancer. Progress in Biophysics and Molecular Biology, 2011, 106, 337-339.	1.4	17
108	Reductionism, Organicism, and Causality in the Biomedical Sciences: A Critique. Perspectives in Biology and Medicine, 2018, 61, 489-502.	0.3	17

#	Article	IF	CITATIONS
109	On the role of 17 alpha-estradiol and 17 beta-estradiol in the proliferation of MCF7 and T47D-A11 human breast tumor cells. Journal of Cellular Physiology, 1985, 125, 591-595.	2.0	16
110	Histological analysis of low dose NMU effects in the rat mammary gland. BMC Cancer, 2009, 9, 267.	1.1	16
111	Perinatal BPA exposure and reproductive axis function in CD-1 mice. Reproductive Toxicology, 2018, 79, 39-46.	1.3	16
112	Characterization of MCF-12A cell phenotype, response to estrogens, and growth in 3D. Cancer Cell International, 2018, 18, 43.	1.8	14
113	An Integrative Approach Toward Biology, Organisms, and Cancer. Methods in Molecular Biology, 2018, 1702, 15-26.	0.4	13
114	Regulation of Cell Proliferation: The Negative Control Perspective. Annals of the New York Academy of Sciences, 1991, 628, 412-418.	1.8	12
115	Breast epithelial tissue morphology is affected in 3D cultures by speciesâ€specific collagenâ€based extracellular matrix. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2905-2912.	2.1	12
116	SAMA: A Method for 3D Morphological Analysis. PLoS ONE, 2016, 11, e0153022.	1.1	12
117	Alpha-Fetoprotein Serum Levels and the Development of Estrogen-Sensitive Cell Multiplication in the Hamster Uterus. Biology of Reproduction, 1983, 28, 1148-1154.	1.2	10
118	Lack of c-kit receptor promotes mammary tumors in N-nitrosomethylurea-treated Ws/Ws rats. Cancer Cell International, 2008, 8, 5.	1.8	10
119	Paradoxes in Carcinogenesis: There Is Light at the End of That Tunnel!. Disruptive Science and Technology, 2013, 1, 154-156.	1.0	10
120	A novel pathogenic classification of cancers. Cancer Cell International, 2014, 14, 113.	1.8	10
121	The cancer puzzle: Welcome to organicism. Progress in Biophysics and Molecular Biology, 2021, 165, 114-119.	1.4	10
122	Mechanism of Androgen Action on Cell Proliferation: AS3 Protein as a Mediator of Proliferative Arrest in the Rat Prostate. , 0, .		10
123	Response to "In defense of the somatic mutation theory of cancer―DOI: 10.1002/bies.201100022. BioEssays, 2011, 33, 657-659.	1.2	9
124	Characterization of a plasma membrane-resident albumin-binding protein associated with the proliferation of estrogen-target, serum-sensitive cells. Steroids, 2003, 68, 487-496.	0.8	8
125	Are Times a' Changin' in Carcinogenesis?. Endocrinology, 2005, 146, 11-12.	1.4	8
126	Carcinogenesis and Metastasis Now in the Third Dimension—What's in It for Pathologists?. American Journal of Pathology, 2006, 168, 363-366.	1.9	8

#	Article	IF	CITATIONS
127	Vitamin D3 constrains estrogen's effects and influences mammary epithelial organization in 3D cultures. Scientific Reports, 2019, 9, 7423.	1.6	8
128	From Wingspread to CLARITY: a personal trajectory. Nature Reviews Endocrinology, 2021, 17, 247-256.	4.3	8
129	Correcting an error. BioEssays, 2006, 28, 227-227.	1.2	7
130	Endocrine disruptors — putting the mechanistic cart before the phenomenological horse. Nature Reviews Endocrinology, 2018, 14, 317-318.	4.3	7
131	Best practices to quantify the impact of reproductive toxicants on development, function, and diseases of the rodent mammary gland. Reproductive Toxicology, 2022, 112, 51-67.	1.3	7
132	Why systems biology and cancer?. Seminars in Cancer Biology, 2011, 21, 147-149.	4.3	6
133	Information, programme, signal: dead metaphors that negate the agency of organisms. Interdisciplinary Science Reviews, 2020, 45, 331-343.	1.0	6
134	Endocrine Disruption and the Female. , 2007, , 9-31.		4
135	And yet another epicycle. BioEssays, 2006, 28, 100-101.	1.2	3
136	Response to Coffman. BioEssays, 2005, 27, 460-461.	1.2	2
137	Forum: Artificial Intelligence, Artificial Agency and Artificial Life. RUSI Journal, 2019, 164, 120-144.	0.1	2
138	Cell proliferation in metazoans: Negative control mechanisms. Cancer Treatment and Research, 1991, 53, 171-194.	0.2	2
139	Unanticipated Trends Stemming from Initial Events in the History of Cell Culture: Vitalism in 2013?. History, Philosophy and Theory of the Life Sciences, 2013, , 293-309.	0.4	2
140	RESPONSE: Re: Effect of Long-Term Estrogen Deprivation on Apoptotic Responses of Breast Cancer Cells to 17beta-Estradiol and The Two Faces of Janus: Sex Steroids as Mediators of Both Cell Proliferation and Cell Death. Journal of the National Cancer Institute, 2002, 94, 1174-1175.	3.0	1
141	A Hormone-responsive 3D Culture Model of the Human Mammary Gland Epithelium. Journal of Visualized Experiments, 2016, , e53098.	0.2	1
142	Revisiting D.W. Smithers's "Cancer: An Attack on Cytologism―(1962). Biological Theory, 2020, 15, 180-187.	0.8	1
143	Matrix Composition Modulates Vitamin D3's Effects on 3D Collagen Fiber Organization by MCF10A Cells. Tissue Engineering - Part A, 2021, 27, 1399-1410.	1.6	1
144	Development and maturation of the normal female reproductive system. , 2010, , .		0

#	Article	IF	CITATIONS
145	Overgeneralization by Mesnage et al. Regarding Bisphenol A Alternatives. Toxicological Sciences, 2017, 160, 2-2.	1.4	0
146	Mammary Gland Development. , 2018, , 786-792.		0
147	From Evidence of Harm to Public Health Policy: Is There Light at the End of the Tunnel? Response to: "Update on the Health Effects of bisphenol A: Overwhelming Evidence of Harm― Endocrinology, 2021, 162, .	1.4	0
148	Early Life Exposure to Bisphenol A and Breast Neoplasia. , 2011, , 55-68.		0
149	Cancer Theories. , 2013, , 196-198.		0