Pardis C Sabeti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7105872/publications.pdf

Version: 2024-02-01

93 papers 27,772 citations

50276 46 h-index 49909 87 g-index

117 all docs

117 docs citations

117 times ranked

50522 citing authors

#	Article	IF	Citations
1	Detection of Neanderthal Adaptively Introgressed Genetic Variants That Modulate Reporter Gene Expression in Human Immune Cells. Molecular Biology and Evolution, 2022, 39, .	8.9	24
2	Serological Markers of SARS-CoV-2 Reinfection. MBio, 2022, 13, e0214121.	4.1	8
3	Containing the spread of mumps on college campuses. Royal Society Open Science, 2022, 9, 210948.	2.4	6
4	Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nature Medicine, 2022, 28, 1083-1094.	30.7	127
5	The case for altruism in institutional diagnostic testing. Scientific Reports, 2022, 12, 1857.	3.3	3
6	Transmission from vaccinated individuals in a large SARS-CoV-2 Delta variant outbreak. Cell, 2022, 185, 485-492.e10.	28.9	38
7	Unrecognized introductions of SARS-CoV-2 into the US state of Georgia shaped the early epidemic. Virus Evolution, 2022, 8, veac011.	4.9	2
8	Designing sensitive viral diagnostics with machine learning. Nature Biotechnology, 2022, 40, 1123-1131.	17.5	30
9	Synthetic DNA spike-ins (SDSIs) enable sample tracking and detection of inter-sample contamination in SARS-CoV-2 sequencing workflows. Nature Microbiology, 2022, 7, 108-119.	13.3	6
10	Multiplexed detection of bacterial nucleic acids using Cas13 in droplet microarrays., 2022, 1, pgac021.		15
11	Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. Science, 2022, 376, 1327-1332.	12.6	172
12	Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nature Biomedical Engineering, 2022, 6, 932-943.	22.5	76
13	Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science, 2021, 371, .	12.6	226
14	Testing in a Pandemic â€" Improving Access, Coordination, and Prioritization. New England Journal of Medicine, 2021, 384, 197-199.	27.0	24
15	Fatal Case of Chronic Jamestown Canyon Virus Encephalitis Diagnosed by Metagenomic Sequencing in Patient Receiving Rituximab. Emerging Infectious Diseases, 2021, 27, 238-242.	4.3	17
16	COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature, 2021, 595, 107-113.	27.8	537
17	Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host and Microbe, 2021, 29, 689-703.	11.0	50
18	Development of a qualitative real-time RT-PCR assay for the detection of SARS-CoV-2: a guide and case study in setting up an emergency-use, laboratory-developed molecular microbiological assay. Journal of Clinical Pathology, 2021, 74, 496-503.	2.0	5

#	Article	IF	Citations
19	Profiling SARS-CoV-2 HLA-I peptidome reveals TÂcell epitopes from out-of-frame ORFs. Cell, 2021, 184, 3962-3980.e17.	28.9	98
20	Direct characterization of cis-regulatory elements and functional dissection of complex genetic associations using HCR–FlowFISH. Nature Genetics, 2021, 53, 1166-1176.	21.4	36
21	The Origins and Future of Sentinel: An Early-Warning System for Pandemic Preemption and Response. Viruses, 2021, 13, 1605.	3.3	8
22	SARS-CoV-2 Reinfection in a Liver Transplant Recipient. Annals of Internal Medicine, 2021, 174, 1178-1180.	3.9	10
23	Genome-wide functional screen of 3′UTR variants uncovers causal variants for human disease and evolution. Cell, 2021, 184, 5247-5260.e19.	28.9	62
24	Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell, 2021, 184, 4919-4938.e22.	28.9	193
25	Intrathecal inflammatory responses in the absence of SARS-CoV-2 nucleic acid in the CSF of COVID-19 hospitalized patients. Journal of the Neurological Sciences, 2021, 430, 120023.	0.6	27
26	Powassan Virus Neuropathology and Genomic Diversity in Patients With Fatal Encephalitis. Open Forum Infectious Diseases, 2020, 7, ofaa392.	0.9	19
27	A MicroRNA Linking Human Positive Selection and Metabolic Disorders. Cell, 2020, 183, 684-701.e14.	28.9	46
28	Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell, 2020, 183, 739-751.e8.	28.9	924
29	Preventing Outbreaks through Interactive, Experiential Real-Life Simulations. Cell, 2020, 182, 1366-1371.	28.9	2
30	Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nature Communications, 2020, 11, 5921.	12.8	299
31	Diagnostic Approach for Arboviral Infections in the United States. Journal of Clinical Microbiology, 2020, 58, .	3.9	35
32	Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nature Communications, 2020, 11, 4131.	12.8	101
33	Single-Cell Profiling of Ebola Virus Disease InÂVivo Reveals Viral and Host Dynamics. Cell, 2020, 183, 1383-1401.e19.	28.9	79
34	Lassa Virus Genetics. Current Topics in Microbiology and Immunology, 2020, , 1.	1.1	4
35	Massively multiplexed nucleic acid detection with Cas13. Nature, 2020, 582, 277-282.	27.8	492
36	Combining genomics and epidemiology to track mumps virus transmission in the United States. PLoS Biology, 2020, 18, e3000611.	5.6	37

#	Article	IF	Citations
37	Reporter Assays for Ebola Virus Nucleoprotein Oligomerization, Virion-Like Particle Budding, and Minigenome Activity Reveal the Importance of Nucleoprotein Amino Acid Position 111. Viruses, 2020, 12, 105.	3.3	9
38	Identification of Common CD8 ⁺ T Cell Epitopes from Lassa Fever Survivors in Nigeria and Sierra Leone. Journal of Virology, 2020, 94, .	3.4	15
39	Jamestown Canyon virus in Massachusetts: clinical case series and vector screening. Emerging Microbes and Infections, 2020, 9, 903-912.	6.5	20
40	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
41	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
42	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
43	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
44	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
45	Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.		0
46	Benchmarking Metagenomics Tools for Taxonomic Classification. Cell, 2019, 178, 779-794.	28.9	364
47	Benchmarking Metagenomics Tools for Taxonomic Classification. Cell, 2019, 178, 779-794. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. ELife, 2019, 8, .	28.9 6.0	252
	Identifying gene expression programs of cell-type identity and cellular activity with single-cell		
47	Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. ELife, 2019, 8, . Programmable Inhibition and Detection of RNA Viruses Using Cas13. Molecular Cell, 2019, 76,	6.0	252
47	Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. ELife, 2019, 8, . Programmable Inhibition and Detection of RNA Viruses Using Cas13. Molecular Cell, 2019, 76, 826-837.e11. Machine-learning Prognostic Models from the 2014–16 Ebola Outbreak: Data-harmonization	6.0 9.7	252
47 48 49	Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. ELife, 2019, 8, . Programmable Inhibition and Detection of RNA Viruses Using Cas13. Molecular Cell, 2019, 76, 826-837.e11. Machine-learning Prognostic Models from the 2014–16 Ebola Outbreak: Data-harmonization Challenges, Validation Strategies, and mHealth Applications. EClinicalMedicine, 2019, 11, 54-64. Development of a SNP barcode to genotype Babesia microti infections. PLoS Neglected Tropical	6.0 9.7 7.1	252 286 38
47 48 49 50	Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. ELife, 2019, 8, . Programmable Inhibition and Detection of RNA Viruses Using Cas13. Molecular Cell, 2019, 76, 826-837.e11. Machine-learning Prognostic Models from the 2014–16 Ebola Outbreak: Data-harmonization Challenges, Validation Strategies, and mHealth Applications. EClinicalMedicine, 2019, 11, 54-64. Development of a SNP barcode to genotype Babesia microti infections. PLoS Neglected Tropical Diseases, 2019, 13, e0007194.	6.0 9.7 7.1 3.0	252 286 38 5
47 48 49 50	Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. ELife, 2019, 8, . Programmable Inhibition and Detection of RNA Viruses Using Cas13. Molecular Cell, 2019, 76, 826-837.e11. Machine-learning Prognostic Models from the 2014–16 Ebola Outbreak: Data-harmonization Challenges, Validation Strategies, and mHealth Applications. EClinicalMedicine, 2019, 11, 54-64. Development of a SNP barcode to genotype Babesia microti infections. PLoS Neglected Tropical Diseases, 2019, 13, e0007194. New filovirus disease classification and nomenclature. Nature Reviews Microbiology, 2019, 17, 261-263. Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nature	6.0 9.7 7.1 3.0 28.6	252 286 38 5

#	Article	IF	Citations
55	Identifying the favored mutation in a positive selective sweep. Nature Methods, 2018, 15, 279-282.	19.0	56
56	Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360, 444-448.	12.6	982
57	Comparative evidence for the independent evolution of hair and sweat gland traits in primates. Journal of Human Evolution, 2018, 125, 99-105.	2.6	36
58	Genomic Analysis of Lassa Virus during an Increase in Cases in Nigeria in 2018. New England Journal of Medicine, 2018, 379, 1745-1753.	27.0	135
59	Acute Lassa Virus Encephalitis with Lassa Virus in the Cerebrospinal Fluid but Absent in the Blood: A Case Report with a Positive Outcome. Case Reports in Neurology, 2018, 10, 150-158.	0.7	12
60	Predicting gene expression in massively parallel reporter assays: A comparative study. Human Mutation, 2017, 38, 1240-1250.	2.5	39
61	Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356, 438-442.	12.6	2,275
62	Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 2017, 546, 401-405.	27.8	298
63	Zika virus evolution and spread in the Americas. Nature, 2017, 546, 411-415.	27.8	323
64	Evidence of Ebola Virus Replication and High Concentration in Semen of a Patient During Recovery. Clinical Infectious Diseases, 2017, 65, 1400-1403.	5.8	26
65	An Outbreak of Ebola Virus Disease in the Lassa Fever Zone. Journal of Infectious Diseases, 2016, 214, S110-S121.	4.0	34
66	Roots, Not Parachutes: Research Collaborations Combat Outbreaks. Cell, 2016, 166, 5-8.	28.9	48
67	Ebola Virus Epidemiology and Evolution in Nigeria. Journal of Infectious Diseases, 2016, 214, S102-S109.	4.0	19
68	Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nature Communications, 2016, 7, 11544.	12.8	148
69	Genomic Analysis of Viral Outbreaks. Annual Review of Virology, 2016, 3, 173-195.	6.7	61
70	In vivo Ebola virus infection leads to a strong innate response in circulating immune cells. BMC Genomics, 2016, 17, 707.	2.8	54
71	Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013–2016 Epidemic. Cell, 2016, 167, 1088-1098.e6.	28.9	173
72	Unbiased Deep Sequencing of RNA Viruses from Clinical Samples. Journal of Visualized Experiments, 2016, , .	0.3	26

#	Article	IF	CITATIONS
73	Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay. Cell, 2016, 165, 1519-1529.	28.9	378
74	GB Virus C Coinfections in West African Ebola Patients. Journal of Virology, 2015, 89, 2425-2429.	3.4	65
75	Evaluation of the Potential Impact of Ebola Virus Genomic Drift on the Efficacy of Sequence-Based Candidate Therapeutics. MBio, 2015, 6, .	4.1	62
76	COIL: a methodology for evaluating malarial complexity of infection using likelihood from single nucleotide polymorphism data. Malaria Journal, 2015, 14, 4.	2.3	71
77	Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics, 2015, 16, 454.	2.8	160
78	Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell, 2015, 161, 1516-1526.	28.9	275
79	A genetic basis of variation in eccrine sweat gland and hair follicle density. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9932-9937.	7.1	57
80	Discovery of Novel Rhabdoviruses in the Blood of Healthy Individuals from West Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0003631.	3.0	56
81	Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic. Nature, 2015, 524, 102-104.	27.8	96
82	Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections. PLoS Neglected Tropical Diseases, 2015, 9, e0003539.	3.0	90
83	A global reference for human genetic variation. Nature, 2015, 526, 68-74.	27.8	13,998
84	Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell, 2015, 162, 738-750.	28.9	230
85	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	3.3	49
86	Nomenclature- and Database-Compatible Names for the Two Ebola Virus Variants that Emerged in Guinea and the Democratic Republic of the Congo in 2014. Viruses, 2014, 6, 4760-4799.	3.3	83
87	Lassa Fever in Post-Conflict Sierra Leone. PLoS Neglected Tropical Diseases, 2014, 8, e2748.	3.0	172
88	Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples. Genome Biology, 2014, 15, 519.	8.8	129
89	Natural selection and infectious disease in human populations. Nature Reviews Genetics, 2014, 15, 379-393.	16.3	353
90	Cleaning up the record on the maximal information coefficient and equitability. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3362-3.	7.1	27

#	Article	IF	CITATIONS
91	<i>Cosi2:</i> an efficient simulator of exact and approximate coalescent with selection. Bioinformatics, 2014, 30, 3427-3429.	4.1	40
92	Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 2014, 345, 1369-1372.	12.6	1,083
93	Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum. PLoS Genetics, 2011, 7, e1001383.	3.5	85