
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7105777/publications.pdf Version: 2024-02-01

FIDEL TOLDRÃ:

#	Article	IF	CITATIONS
1	The Role of Muscle Proteases and Lipases in Flavor Development During the Processing of Dry-Cured Ham. Critical Reviews in Food Science and Nutrition, 1998, 38, 331-352.	5.4	386
2	Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science and Technology, 2018, 79, 136-147.	7.8	315
3	Innovations in value-addition of edible meat by-products. Meat Science, 2012, 92, 290-296.	2.7	237
4	Correlations of Sensory and Volatile Compounds of Spanish "Serrano―Dry-Cured Ham as a Function of Two Processing Times. Journal of Agricultural and Food Chemistry, 1997, 45, 2178-2186.	2.4	235
5	Deproteinization techniques for HPLC amino acid analysis in fresh pork muscle and dry-cured ham. Journal of Agricultural and Food Chemistry, 1991, 39, 1792-1795.	2.4	215
6	Generation of bioactive peptides during food processing. Food Chemistry, 2018, 267, 395-404.	4.2	208
7	Dry-cured ham flavour: enzymatic generation and process influence. Food Chemistry, 1997, 59, 523-530.	4.2	204
8	Proteolysis and lipolysis in flavour development of dry-cured meat products. Meat Science, 1998, 49, S101-S110.	2.7	201
9	Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Research International, 2000, 33, 181-185.	2.9	200
10	The role of muscle enzymes in dry-cured meat products with different drying conditions. Trends in Food Science and Technology, 2006, 17, 164-168.	7.8	194
11	Biochemical and sensory characteristics of traditional fermented sausages of Vallo di Diano (Southern Italy) as affected by the use of starter cultures. Meat Science, 2007, 76, 295-307.	2.7	183
12	New insights into meat by-product utilization. Meat Science, 2016, 120, 54-59.	2.7	181
13	Analysis of protein carbonyls in meat products by using the DNPH-method, fluorescence spectroscopy and liquid chromatography–electrospray ionisation–mass spectrometry (LC–ESI–MS). Meat Science, 2009, 83, 104-112.	2.7	175
14	Cathepsin B, D, H and L activities in the processing of dry-cured ham. Journal of the Science of Food and Agriculture, 1993, 62, 157-161.	1.7	166
15	Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Science, 2004, 68, 439-446.	2.7	165
16	Microbial enzymatic activities for improved fermented meats. Trends in Food Science and Technology, 2011, 22, 81-90.	7.8	160
17	Examination of cathepsins B, D, H and L activities in dry-cured hams. Meat Science, 1988, 23, 1-7.	2.7	145
18	Proteolytic and lipolytic starter cultures and their effect on traditional fermented sausages ripening and sensory traits. Food Microbiology, 2008, 25, 335-347.	2.1	145

#	Article	IF	CITATIONS
19	A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chemistry, 2006, 97, 546-554.	4.2	140
20	Bioactive peptides generated from meat industry by-products. Food Research International, 2014, 65, 344-349.	2.9	137
21	Innovations for healthier processed meats. Trends in Food Science and Technology, 2011, 22, 517-522.	7.8	130
22	Antihypertensive effect and antioxidant activity of peptide fractions extracted from Spanish dry-cured ham. Meat Science, 2012, 91, 306-311.	2.7	127
23	Veterinary drug residues in meat: Concerns and rapid methods for detection. Meat Science, 2008, 78, 60-67.	2.7	126
24	Nutritional composition of dry-cured ham and its role in a healthy diet. Meat Science, 2010, 84, 585-593.	2.7	120
25	Biochemical and sensory changes in dry-cured ham salted with partial replacements of NaCl by other chloride salts. Meat Science, 2012, 90, 361-367.	2.7	120
26	Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. Journal of Proteomics, 2013, 78, 499-507.	1.2	116
27	Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends in Food Science and Technology, 2006, 17, 482-489.	7.8	115
28	Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products - Invited review. Meat Science, 2021, 171, 108272.	2.7	112
29	ldentification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 2013, 138, 1282-1288.	4.2	111
30	Muscle lipolysis phenomena in the processing of dry-cured ham. Food Chemistry, 1993, 48, 121-125.	4.2	110
31	Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chemistry, 2014, 161, 305-311.	4.2	108
32	Hydrophilic Chromatographic Determination of Carnosine, Anserine, Balenine, Creatine, and Creatinine. Journal of Agricultural and Food Chemistry, 2007, 55, 4664-4669.	2.4	107
33	Detection of Proteolytic Activity in Microorganisms Isolated from Dry-Cured Ham. Journal of Food Science, 1992, 57, 1308-1310.	1.5	105
34	Non-Volatile Components Effects on Quality of "Serrano" Dry-cured Ham as Related to Processing Time. Journal of Food Science, 1997, 62, 1235-1239.	1.5	104
35	Angiotensin I-Converting Enzyme Inhibitory Peptides Generated from in Vitro Gastrointestinal Digestion of Pork Meat. Journal of Agricultural and Food Chemistry, 2010, 58, 2895-2901.	2.4	104
36	Concentration of free amino acids and dipeptides in porcine skeletal muscles with different oxidative patterns. Meat Science, 1998, 50, 327-332.	2.7	102

#	Article	IF	CITATIONS
37	Identification of Small Peptides Generated in Spanish Dry-cured Ham. Journal of Food Science, 2003, 68, 64-69.	1.5	101
38	Hydrolysis of muscle myofibrillar proteins by Lactobacillus curvatus and Lactobacillus sake. International Journal of Food Microbiology, 1999, 53, 115-125.	2.1	100
39	Effect of high pressure treatment on colour, microbial and chemical characteristics of dry cured loin. Meat Science, 2008, 80, 1174-1181.	2.7	100
40	Effect of Debaryomyces spp. on the proteolysis of dry-fermented sausages. Meat Science, 2004, 68, 319-328.	2.7	98
41	Trends in Biodiesel Production from Animal Fat Waste. Applied Sciences (Switzerland), 2020, 10, 3644.	1.3	98
42	Bioactive peptides identified in thornback ray skin's gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens. Journal of Proteomics, 2015, 128, 8-17.	1.2	97
43	Activities of pork muscle proteases in model cured meat systems. Biochimie, 1992, 74, 291-296.	1.3	92
44	Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants. Meat Science, 2004, 67, 211-217.	2.7	92
45	Biochemical changes in dry-cured loins salted with partial replacements of NaCl by KCl. Food Chemistry, 2009, 117, 627-633.	4.2	91
46	Assay of lipase and esterase activities in fresh pork meat and dry-cured ham. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1992, 195, 446-450.	0.7	90
47	Microbiology and physico-chemical changes of dry-cured ham during the post-salting stage as affected by partial replacement of NaCl by other salts. Meat Science, 2008, 78, 135-142.	2.7	90
48	In silico analysis and molecular docking study of angiotensin I-converting enzyme inhibitory peptides from smooth-hound viscera protein hydrolysates fractionated by ultrafiltration. Food Chemistry, 2018, 239, 453-463.	4.2	88
49	Contents of creatine, creatinine and carnosine in porcine muscles of different metabolic types. Meat Science, 2008, 79, 709-715.	2.7	87
50	Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis. Food Chemistry, 2018, 250, 180-187.	4.2	87
51	Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends in Food Science and Technology, 2018, 82, 135-147.	7.8	87
52	Freshness monitoring of sea bream (Sparus aurata) with a potentiometric sensor. Food Chemistry, 2008, 108, 681-688.	4.2	86
53	Lipid composition and lipolytic enzyme activities in porcine skeletal muscles with different oxidative pattern. Meat Science, 1998, 49, 1-10.	2.7	85
54	Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging. Journal of Food Engineering, 2013, 117, 272-280.	2.7	85

#	Article	IF	CITATIONS
55	Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. International Journal of Food Microbiology, 2018, 276, 71-78.	2.1	85
56	PCR-based fingerprinting techniques for rapid detection of animal species in meat products. Meat Science, 2004, 66, 659-665.	2.7	82
57	Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. Journal of Functional Foods, 2015, 13, 225-238.	1.6	81
58	Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Science, 2012, 91, 382-384.	2.7	80
59	The use of muscle enzymes as predictors of pork meat quality. Food Chemistry, 2000, 69, 387-395.	4.2	79
60	Fish freshness analysis using metallic potentiometric electrodes. Sensors and Actuators B: Chemical, 2008, 131, 362-370.	4.0	79
61	Monitoring of physical–chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue. Food Chemistry, 2011, 126, 1261-1268.	4.2	79
62	Influence of partial replacement of NaCl with KCl, CaCl2 and MgCl2 on lipolysis and lipid oxidation in dry-cured ham. Meat Science, 2011, 89, 58-64.	2.7	77
63	Lipolytic and oxidative changes in two Spanish pork loin products: dry-cured loin and pickled-cured loin. Meat Science, 1999, 51, 123-128.	2.7	75
64	Optimisation of solid phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. Journal of the Science of Food and Agriculture, 2002, 82, 1703-1709.	1.7	75
65	Influence of sodium replacement on physicochemical properties of dry-cured loin. Meat Science, 2009, 83, 423-430.	2.7	75
66	A fluorescence-based protocol for quantifying angiotensin-converting enzyme activity. Nature Protocols, 2006, 1, 2423-2427.	5.5	74
67	Effects of active gelatin coated with henna (L.Âinermis) extract on beef meat quality during chilled storage. Food Control, 2018, 84, 238-245.	2.8	74
68	Porcine Aminopeptidase Activity as Affected by Curing Agents. Journal of Food Science, 1993, 58, 724-726.	1.5	73
69	Sensory characteristics of cooked pork loin as affected by nucleotide content and post-mortem meat quality. Meat Science, 1999, 51, 53-59.	2.7	72
70	Evaluation of ACE inhibitory activity of dipeptides generated by the action of porcine muscle dipeptidyl peptidases. Food Chemistry, 2007, 102, 511-515.	4.2	72
71	Muscle and Adipose Tissue Aminopeptidase Activities in Raw and Dry-Cured Ham Journal of Food Science, 1992, 57, 816-818.	1.5	71
72	Postmortem meat quality and sex affect textural properties and protein breakdown of dry-cured ham. Meat Science, 1999, 51, 255-260.	2.7	71

#	Article	IF	CITATIONS
73	Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Science, 2014, 96, 757-761.	2.7	70
74	Oligopeptides Arising from the Degradation of Creatine Kinase in Spanish Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 2009, 57, 8982-8988.	2.4	69
75	Naturally Generated Small Peptides Derived from Myofibrillar Proteins in Serrano Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 2009, 57, 3228-3234.	2.4	69
76	Proteomic identification of antioxidant peptides from 400 to 2500Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Research International, 2014, 56, 68-76.	2.9	69
77	Characterisation of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chemistry, 2018, 258, 8-15.	4.2	69
78	Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. Journal of Agricultural and Food Chemistry, 2020, 68, 12842-12855.	2.4	69
79	Identification of small troponin T peptides generated in dry-cured ham. Food Chemistry, 2010, 123, 691-697.	4.2	68
80	Characterization of Peptides Released by <i>in Vitro</i> Digestion of Pork Meat. Journal of Agricultural and Food Chemistry, 2010, 58, 5160-5165.	2.4	68
81	Peptides with angiotensin I converting enzyme (ACE) inhibitory activity generated from porcine skeletal muscle proteins by the action of meat-borne Lactobacillus. Journal of Proteomics, 2013, 89, 183-190.	1.2	68
82	Main characteristics of peanut skin and its role for the preservation of meat products. Trends in Food Science and Technology, 2018, 77, 1-10.	7.8	68
83	Dipeptidyl peptidase activities along the processing of Serrano dry-cured ham. European Food Research and Technology, 2001, 213, 83-87.	1.6	67
84	Effect of pork meat proteins on the binding of volatile compounds. Food Chemistry, 2008, 108, 1226-1233.	4.2	67
85	Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. Journal of Proteomics, 2015, 128, 458-468.	1.2	67
86	Transepithelial transport of dry-cured ham peptides with ACE inhibitory activity through a Caco-2 cell monolayer. Journal of Functional Foods, 2016, 21, 388-395.	1.6	66
87	Purification and characterisation of a glutaminase from Debaryomyces spp International Journal of Food Microbiology, 2002, 76, 117-126.	2.1	64
88	ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution. Applied Biochemistry and Biotechnology, 2017, 181, 48-64.	1.4	64
89	Hydrolytic Action ofLactobacillus caseiCRL 705 on Pork Muscle Sarcoplasmic and Myofibrillar Proteins. Journal of Agricultural and Food Chemistry, 1999, 47, 3441-3448.	2.4	63
90	A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6. Food Research International, 2016, 89, 347-358.	2.9	63

#	Article	IF	CITATIONS
91	Pork meat quality affects peptide and amino acid profiles during the ageing process. Meat Science, 2001, 58, 197-206.	2.7	62
92	Effect of curing agents and water activity on pork muscle and adipose subcutaneous tissue lipolytic activity. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 196, 228-232.	0.7	61
93	Peptide generation in the processing of dry-cured ham. Food Chemistry, 1995, 53, 187-190.	4.2	61
94	Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces hansenii. International Journal of Food Microbiology, 2001, 68, 199-206.	2.1	61
95	HPLC purification and characterization of porcine muscle aminopeptidase B. Biochimie, 1993, 75, 861-867.	1.3	60
96	Purification and Characterization of an Aminopeptidase fromLactobacillus sake. Journal of Agricultural and Food Chemistry, 1997, 45, 1552-1558.	2.4	60
97	Combined biocatalytic conversion of smooth hound viscera: Protein hydrolysates elaboration and assessment of their antioxidant, anti-ACE and antibacterial activities. Food Research International, 2016, 86, 9-23.	2.9	60
98	Effect of ultrasound pretreatment and Maillard reaction on structure and antioxidant properties of ultrafiltrated smooth-hound viscera proteins-sucrose conjugates. Food Chemistry, 2017, 230, 507-515.	4.2	60
99	Antioxidant and Antimicrobial Activity of Peptides Extracted from Meat By-products: a Review. Food Analytical Methods, 2019, 12, 2401-2415.	1.3	60
100	Effect of dry-curing process parameters on pork muscle cathepsin B, H and L activity. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1991, 193, 541-544.	0.7	59
101	Purification and Characterization of a Prolyl Aminopeptidase from Debaryomyces hansenii. Applied and Environmental Microbiology, 2003, 69, 227-232.	1.4	59
102	Proteomic Identification of Actin-Derived Oligopeptides in Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 2007, 55, 3613-3619.	2.4	59
103	Physicochemical changes in dry-cured hams salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride. Meat Science, 2010, 86, 331-336.	2.7	59
104	Bioactive peptides generated in the processing of dry-cured ham. Food Chemistry, 2020, 321, 126689.	4.2	59
105	Purification and Characterization of an Arginine Aminopeptidase from Lactobacillus sakei. Applied and Environmental Microbiology, 2002, 68, 1980-1987.	1.4	58
106	Physicochemical properties and microbiology of dry-cured loins obtained by partial sodium replacement with potassium, calcium and magnesium. Meat Science, 2010, 85, 580-588.	2.7	58
107	Small peptides hydrolysis in dry-cured meats. International Journal of Food Microbiology, 2015, 212, 9-15.	2.1	58
108	Reâ€evaluation of potassium nitrite (EÂ249) and sodium nitrite (EÂ250) as food additives. EFSA Journal, 2017, 15, e04786.	0.9	58

#	Article	IF	CITATIONS
109	Wound healing activity of cuttlefish gelatin gels and films enriched by henna (Lawsonia inermis) extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512, 71-79.	2.3	58
110	Pattern of Muscle Proteolytic and Lipolytic Enzymes from Light and Heavy Pigs. , 1996, 71, 124-128.		57
111	Sensory improvement of dry-fermented sausages by the addition of cell-free extracts from Debaryomyces hansenii and Lactobacillus sakei. Meat Science, 2006, 72, 457-466.	2.7	57
112	Nucleotides and their degradation products during processing of dry-cured ham, measured by HPLC and an enzyme sensor. Meat Science, 2011, 87, 125-129.	2.7	57
113	Protein extractability in dry-cured ham. Food Chemistry, 1992, 44, 391-394.	4.2	55
114	Curing agents affect aminopeptidase activity from porcine skeletal muscle. European Food Research and Technology, 1997, 205, 343-346.	0.6	55
115	In silico analysis and antihypertensive effect of ACE-inhibitory peptides from smooth-hound viscera protein hydrolysate: Enzyme-peptide interaction study using molecular docking simulation. Process Biochemistry, 2017, 58, 145-159.	1.8	55
116	Effect of ionic strength of different salts on the binding of volatile compounds to porcine soluble protein extracts in model systems. Food Research International, 2007, 40, 687-693.	2.9	54
117	HPLC Purification and Characterization of Soluble Alanyl Aminopeptidase from Porcine Skeletal Muscle. Journal of Agricultural and Food Chemistry, 1996, 44, 2578-2583.	2.4	53
118	Low-frequency dielectric spectrum to determine pork meat quality. Innovative Food Science and Emerging Technologies, 2010, 11, 376-386.	2.7	53
119	Comparison of muscle proteolytic and lipolytic enzyme levels in raw hams from Iberian and White pigs. , 1998, 76, 117-122.		52
120	Hypoxanthine-based enzymatic sensor for determination of pork meat freshness. Food Chemistry, 2010, 123, 949-954.	4.2	52
121	Boarfish protein recovery using the pH-shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in spontaneously hypertensive rats. Innovative Food Science and Emerging Technologies, 2016, 37, 253-260.	2.7	52
122	Risk assessment of chemical substances of safety concern generated in processed meats. Food Science and Human Wellness, 2019, 8, 244-251.	2.2	52
123	Effect of growth phase and dry-cured sausage processing conditions on Debaryomyces spp. generation of volatile compounds from branched-chain amino acids. Food Chemistry, 2004, 86, 391-399.	4.2	51
124	Pre-freezing Hams Affects Lipolysis during Dry-curing. Journal of Food Science, 1994, 59, 303-305.	1.5	50
125	Purification and Characterization of an X-Prolyl-Dipeptidyl Peptidase from Lactobacillus sakei. Applied and Environmental Microbiology, 2001, 67, 1815-1820.	1.4	50
126	In Vitro and In Silico Approaches to Generating and Identifying Angiotensin-Converting Enzyme I Inhibitory Peptides from Green Macroalga Ulva lactuca. Marine Drugs, 2019, 17, 204.	2.2	50

#	Article	IF	CITATIONS
127	Purification and Characterization of a Tripeptidase fromLactobacillus sake. Journal of Agricultural and Food Chemistry, 1998, 46, 349-353.	2.4	49
128	Interactions of Soluble Peptides and Proteins from Skeletal Muscle on the Release of Volatile Compounds. Journal of Agricultural and Food Chemistry, 2003, 51, 6828-6834.	2.4	49
129	Binding of aroma compounds by isolated myofibrillar proteins: Effect of protein concentration and conformation. Food Chemistry, 2007, 105, 932-939.	4.2	49
130	Hydrophilic interaction chromatographic determination of adenosine triphosphate and its metabolites. Food Chemistry, 2010, 123, 1282-1288.	4.2	49
131	Effect of cooking and simulated gastrointestinal digestion on the activity of generated bioactive peptides in aged beef meat. Food and Function, 2017, 8, 4347-4355.	2.1	49
132	Purification and properties of an arginyl aminopeptidase from Debaryomyces hansenii. International Journal of Food Microbiology, 2003, 86, 141-151.	2.1	47
133	Stability of the potent antioxidant peptide SNAAC identified from Spanish dry-cured ham. Food Research International, 2018, 105, 873-879.	2.9	47
134	Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends in Food Science and Technology, 2017, 69, 306-314.	7.8	46
135	ACEI-Inhibitory Peptides Naturally Generated in Meat and Meat Products and Their Health Relevance. Nutrients, 2018, 10, 1259.	1.7	46
136	Application of non-invasive technologies in dry-cured ham: An overview. Trends in Food Science and Technology, 2019, 86, 360-374.	7.8	46
137	Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory peptides. Journal of Functional Foods, 2020, 67, 103840.	1.6	46
138	ATP Metabolites During Aging of Exudative and Nonexudative Pork Meats. Journal of Food Science, 2001, 66, 68-71.	1.5	45
139	Biochemical and Sensory Properties of Dry-Cured Loins as Affected by Partial Replacement of Sodium by Potassium, Calcium, and Magnesium. Journal of Agricultural and Food Chemistry, 2009, 57, 9699-9705.	2.4	45
140	Intense Degradation of Myosin Light Chain Isoforms in Spanish Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 2011, 59, 3884-3892.	2.4	45
141	Small peptides released from muscle glycolytic enzymes during dry-cured ham processing. Journal of Proteomics, 2011, 74, 442-450.	1.2	45
142	Variability in the contents of pork meat nutrients and how it may affect food composition databases. Food Chemistry, 2013, 140, 478-482.	4.2	45
143	Effect of electrohydraulic shockwave treatment on tenderness, muscle cathepsin and peptidase activities and microstructure of beef loin steaks from Holstein young bulls. Meat Science, 2014, 98, 759-765.	2.7	45
144	In vitro and in vivo anti-diabetic and anti-hyperlipidemic effects of protein hydrolysates from Octopus vulgaris in alloxanic rats. Food Research International, 2018, 106, 952-963.	2.9	45

#	Article	IF	CITATIONS
145	Activity of cathepsin D as affected by chemical and physical dry-curing parameters. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1990, 191, 20-23.	0.7	44
146	Novel bioactive peptides from enzymatic hydrolysate of Sardinelle (Sardinella aurita) muscle proteins hydrolysed by Bacillus subtilis A26 proteases. Food Research International, 2017, 100, 121-133.	2.9	44
147	Reâ€evaluation of sodium nitrate (E 251) and potassium nitrate (E 252) as food additives. EFSA Journal, 2017, 15, e04787.	0.9	44
148	Effect of cooking and in vitro digestion on the antioxidant activity of dry-cured ham by-products. Food Research International, 2017, 97, 296-306.	2.9	43
149	SUBCUTANEOUS ADIPOSE TISSUE LIPOLYSIS IN THE PROCESSING OF DRY-CURED HAM. Journal of Food Biochemistry, 1992, 16, 323-335.	1.2	42
150	Titin-derived peptides as processing time markers in dry-cured ham. Food Chemistry, 2015, 167, 326-339.	4.2	42
151	Characterization of the peptide profile in Spanish Teruel, Italian Parma and Belgian dry-cured hams and its potential bioactivity. Food Research International, 2016, 89, 638-646.	2.9	42
152	Effect of dietary selenium source (organic vs. mineral) and muscle <scp>pH</scp> on meat quality characteristics of pigs. Food Science and Nutrition, 2017, 5, 94-102.	1.5	42
153	Lipids of pork meat as affected by various cooking techniques / Modificaciones de los lÃpidos de carne de cerdo en función de su guiso. Food Science and Technology International, 1999, 5, 501-508.	1.1	41
154	Accelerated processing of dry-cured ham. Part 2. Influence of brine thawing/salting operation on proteolysis and sensory acceptability. Meat Science, 2006, 72, 766-772.	2.7	41
155	Antihypertensive effect of peptides naturally generated during Iberian dry-cured ham processing. Food Research International, 2015, 78, 71-78.	2.9	41
156	Developments in the Use of Lipase Transesterification for Biodiesel Production from Animal Fat Waste. Applied Sciences (Switzerland), 2020, 10, 5085.	1.3	41
157	A simple, fast and reliable methodology for the analysis of histidine dipeptides as markers of the presence of animal origin proteins in feeds for ruminants. Food Chemistry, 2004, 84, 485-491.	4.2	40
158	Effect of sodium, potassium, calcium and magnesium chloride salts on porcine muscle proteases. European Food Research and Technology, 2009, 229, 93-98.	1.6	40
159	Antioxidant peptides profile in dry-cured ham as affected by gastrointestinal digestion. Journal of Functional Foods, 2020, 69, 103956.	1.6	40
160	SENSORY CHARACTERISTICS OF SPANISH "SERRANO" DRY-CURED HAM. Journal of Sensory Studies, 1997, 12, 169-179.	0.8	39
161	Effect of nitrate and nitrite curing salts on microbial changes and sensory quality of rapid ripened sausages. International Journal of Food Microbiology, 1997, 37, 225-229.	2.1	39
162	Effects of the terminal sire type and sex on pork muscle cathepsins (B, B+L and H), cysteine proteinase inhibitors and lipolytic enzyme activities. Meat Science, 1999, 51, 185-189.	2.7	39

#	Article	IF	CITATIONS
163	Creatine and creatinine evolution during the processing of dry-cured ham. Meat Science, 2010, 84, 384-389.	2.7	39
164	<i>Lactobacillus sakei </i> CRL1862 improves safety and protein hydrolysis in meat systems. Journal of Applied Microbiology, 2012, 113, 1407-1416.	1.4	39
165	A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages. International Journal of Food Microbiology, 2015, 212, 41-48.	2.1	39
166	Effects of dry-cured ham rich in bioactive peptides on cardiovascular health: A randomized controlled trial. Journal of Functional Foods, 2017, 38, 160-167.	1.6	39
167	Management of meat by- and co-products for an improved meat processing sustainability. Meat Science, 2021, 181, 108608.	2.7	39
168	Effects of pig sire type and sex on carcass traits, meat quality and sensory quality of dry-cured ham. , 1999, 79, 1147-1154.		38
169	Nitrogen compounds as potential biochemical markers of pork meat quality. Food Chemistry, 2000, 69, 371-377.	4.2	38
170	Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham. Food Chemistry, 2014, 149, 121-128.	4.2	38
171	Isolation of flavor peptides from raw pork meat and dry-cured ham. Developments in Food Science, 1995, , 1323-1344.	0.0	37
172	The use of label-free mass spectrometry for relative quantification of sarcoplasmic proteins during the processing of dry-cured ham. Food Chemistry, 2016, 196, 437-444.	4.2	37
173	Protease and esterase activity of staphylococci. International Journal of Food Microbiology, 2006, 112, 223-229.	2.1	36
174	Partial replacement of sodium in meat and fish products by using magnesium salts. A review. Plant and Soil, 2013, 368, 179-188.	1.8	36
175	Current feeding strategies to improve pork intramuscular fat content and its nutritional quality. Advances in Food and Nutrition Research, 2019, 89, 53-94.	1.5	36
176	Effect of curing agents on m-calpain activity throughout the curing process. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 203, 320-325.	0.7	35
177	Purification and Biochemical Properties of Dipeptidyl Peptidase I from Porcine Skeletal Muscle. Journal of Agricultural and Food Chemistry, 2000, 48, 5014-5022.	2.4	35
178	Effect of exercise on skeletal muscle proteolytic enzyme activity and meat quality characteristics in Iberian pigs. Meat Science, 2008, 79, 71-76.	2.7	35
179	Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly. Food Research International, 2019, 116, 905-915.	2.9	35
180	Activity of Aminopeptidase and Lipolytic Enzymes in Five Skeletal Muscles with Various Oxidative Patterns. Journal of the Science of Food and Agriculture, 1996, 70, 127-130.	1.7	34

#	Article	IF	CITATIONS
181	Composition and proteolytic and lipolytic enzyme activities in muscle Longissimus dorsi from Iberian pigs and industrial genotype pigs. Food Chemistry, 2004, 88, 25-33.	4.2	34
182	Model Studies on the Efficacy of Protein Homogenates from Raw Pork Muscle and Dry-Cured Ham in Binding Selected Flavor Compounds. Journal of Agricultural and Food Chemistry, 2006, 54, 4802-4808.	2.4	34
183	Effect of dietary organic selenium on muscle proteolytic activity and water-holding capacity in pork. Meat Science, 2016, 121, 1-11.	2.7	34
184	Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochemistry, 2016, 51, 2186-2197.	1.8	34
185	Antilisterial peptides from Spanish dry-cured hams: Purification and identification. Food Microbiology, 2016, 59, 133-141.	2.1	34
186	Effect of pre-ripening on microbial and chemical changes in dry fermented sausages. Food Microbiology, 1997, 14, 575-582.	2.1	33
187	Effect of the Partial Replacement of Sodium Chloride by Other Salts on the Formation of Volatile Compounds during Ripening of Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 2012, 60, 7607-7615.	2.4	33
188	Proteolysis follow-up in dry-cured meat products through proteomic approaches. Food Research International, 2013, 54, 1292-1297.	2.9	33
189	Nutritional pork meat compounds as affected by ham dry-curing. Meat Science, 2013, 93, 53-60.	2.7	33
190	Rheological and structural properties of Hemiramphus far skin gelatin: Potential use as an active fish coating agent. Food Hydrocolloids, 2019, 87, 331-341.	5.6	33
191	The relevance of dipeptides and tripeptides in the bioactivity and taste of dry-cured ham. Food Production Processing and Nutrition, 2019, 1, .	1.1	33
192	Availability of essential amino acids in dry-cured ham. International Journal of Food Sciences and Nutrition, 1993, 44, 215-219.	1.3	32
193	Evolution of nitrate and nitrite during the processing of dry-cured ham with partial replacement of NaCl by other chloride salts. Meat Science, 2012, 91, 378-381.	2.7	32
194	Cardioprotective Cryptides Derived from Fish and Other Food Sources: Generation, Application, and Future Markets. Journal of Agricultural and Food Chemistry, 2015, 63, 1319-1331.	2.4	32
195	The ability of peptide extracts obtained at different dry cured ham ripening stages to bind aroma compounds. Food Chemistry, 2016, 196, 9-16.	4.2	32
196	Biochemical Properties of Dipeptidyl Peptidase III Purified from Porcine Skeletal Muscle. Journal of Agricultural and Food Chemistry, 1998, 46, 3977-3984.	2.4	31
197	Partial purification and characterisation of dipeptidyl peptidase II from porcine skeletal muscle. Meat Science, 2001, 57, 93-103.	2.7	31
198	Interaction of Soluble Peptides and Proteins from Skeletal Muscle with Volatile Compounds in Model Systems As Affected by Curing Agents. Journal of Agricultural and Food Chemistry, 2005, 53, 1670-1677.	2.4	31

FIDEL TOLDRÃi

#	Article	IF	CITATIONS
199	Microwave dielectric spectroscopy for the determination of pork meat quality. Food Research International, 2010, 43, 2369-2377.	2.9	31
200	Collagenous proteins from black-barred halfbeak skin as a source of gelatin and bioactive peptides. Food Hydrocolloids, 2017, 70, 123-133.	5.6	31
201	Effect of Gelatin Coating Enriched with Antioxidant Tomato By-Products on the Quality of Pork Meat. Polymers, 2020, 12, 1032.	2.0	31
202	Enzyme generation of free amino acids and its nutritional significance in processed pork meats. Developments in Food Science, 1995, 37, 1303-1322.	0.0	30
203	Early Postmortem Detection of Exudative Pork Meat Based on Nucleotide Content. Journal of Food Science, 2000, 65, 413-416.	1.5	30
204	Effect of prefreezing hams on endogenous enzyme activity during the processing of Iberian dry-cured hams. Meat Science, 2009, 82, 241-246.	2.7	30
205	Development and optimisation of a label-free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit. Proteomics, 2013, 13, 2016-2030.	1.3	30
206	New approaches based on comparative proteomics for the assessment of food quality. Current Opinion in Food Science, 2018, 22, 22-27.	4.1	30
207	Fluidized bed anaerobic biodegradation of food industry wastewaters. Biological Wastes, 1987, 21, 55-61.	0.3	29
208	Effect of nitrate and nitrite curing salts on microbial changes and sensory quality of non-fermented sausages. International Journal of Food Microbiology, 1998, 42, 213-217.	2.1	29
209	Purification and characterization of a soluble methionyl aminopeptidase from porcine skeletal muscle. Meat Science, 2000, 56, 247-254.	2.7	29
210	Meat quality, free fatty acid concentration, and oxidative stability of pork from animals fed diets containing different sources of selenium. Food Science and Technology International, 2017, 23, 716-728.	1.1	28
211	Health relevance of antihypertensive peptides in foods. Current Opinion in Food Science, 2018, 19, 8-14.	4.1	28
212	A chromatography method for the screening and confirmatory detection of dexamethasone. Meat Science, 2006, 74, 676-680.	2.7	27
213	Evidence of peptide oxidation from major myofibrillar proteins in dry-cured ham. Food Chemistry, 2015, 187, 230-235.	4.2	27
214	Relevance of nitrate and nitrite in dry-cured ham and their effects on aroma development. Grasas Y Aceites, 2009, 60, 291-296.	0.3	27
215	Effect of frozen storage on lipids and lipolytic activities in the longissimus dorsi muscle of the pig. European Food Research and Technology, 1999, 208, 110-115.	0.6	26

216 Meat Fermentation Technology. , 2001, , .

#	Article	IF	CITATIONS
217	Dipeptidyl peptidase IV from porcine skeletal muscle: purification and biochemical properties. Food Chemistry, 2001, 75, 159-168.	4.2	26
218	Recent Patents for Sodium Reduction in Foods. Recent Patents on Food, Nutrition & Agriculture, 2009, 1, 80-86.	0.5	26
219	Assay of Cathepsin D activity in fresh pork muscle and dry-cured ham. Meat Science, 1991, 29, 287-293.	2.7	25
220	Purification and characterisation of Proteases A and D from Debaryomyces hansenii. International Journal of Food Microbiology, 2008, 124, 135-141.	2.1	25
221	Optimisation of a simple and reliable label-free methodology for the relative quantitation of raw pork meat proteins. Food Chemistry, 2015, 182, 74-80.	4.2	25
222	Peptides naturally generated from ubiquitin-60S ribosomal protein as potential biomarkers of dry-cured ham processing time. Food Control, 2015, 48, 102-107.	2.8	25
223	Peptidomics as a tool for quality control in dry-cured ham processing. Journal of Proteomics, 2016, 147, 98-107.	1.2	25
224	Quantification and in silico analysis of taste dipeptides generated during dry-cured ham processing. Food Chemistry, 2022, 370, 130977.	4.2	25
225	Headspace concentration of selected dry-cured aroma compounds in model systems as affected by curing agents. Food Chemistry, 2007, 102, 488-493.	4.2	24
226	Study of salting and post-salting stages of fresh and thawed Iberian hams. Meat Science, 2008, 79, 677-682.	2.7	24
227	Effect of Cooking Conditions on Creatinine Formation in Cooked Ham. Journal of Agricultural and Food Chemistry, 2008, 56, 11279-11284.	2.4	24
228	Hypolipidemic, antiobesity and cardioprotective effects of sardinelle meat flour and its hydrolysates in high-fat and fructose diet fed Wistar rats. Life Sciences, 2017, 176, 54-66.	2.0	24
229	Challenges and opportunities regarding the use of alternative protein sources: Aquaculture and insects. Advances in Food and Nutrition Research, 2019, 89, 259-295.	1.5	24
230	Peptides with Potential Cardioprotective Effects Derived from Dry-Cured Ham Byproducts. Journal of Agricultural and Food Chemistry, 2019, 67, 1115-1126.	2.4	24
231	Effect of cooking and in vitro digestion on the peptide profile of chicken breast muscle and antioxidant and alcohol dehydrogenase stabilization activity. Food Research International, 2020, 136, 109459.	2.9	24
232	Royal Jelly: Chemistry, Storage and Bioactivities. Journal of Apicultural Science, 2019, 63, 17-40.	0.1	24
233	Accelerated processing of dry-cured ham. Part I. Viability of the use of brine thawing/salting operation. Meat Science, 2006, 72, 757-765.	2.7	23
234	Simple test for differentiation between fresh pork and frozen/thawed pork. Meat Science, 1991, 29, 177-181.	2.7	22

#	Article	IF	CITATIONS
235	Effect of curing conditions and Lactobacillus casei CRL705 on the hydrolysis of meat proteins. Journal of Applied Microbiology, 2001, 91, 478-487.	1.4	22
236	Protease B from Debaryomyces hansenii: purification and biochemical properties. International Journal of Food Microbiology, 2005, 98, 167-177.	2.1	22
237	Physical activity-induced alterations on tissue lipid composition and lipid metabolism in fattening pigs. Meat Science, 2009, 81, 641-646.	2.7	22
238	Feedback Inhibition of Porcine Muscle Alanyl and Arginyl Aminopeptidases in Cured Meat Products. Journal of Agricultural and Food Chemistry, 1998, 46, 4982-4986.	2.4	21
239	Biochemical Proteolysis Basis for Improved Processing of Dry-Cured Meats. Food Additives, 2006, , 329-351.	0.1	21
240	Angiotensin l onverting enzyme inhibitory peptides <scp>FQPSF</scp> and <scp>LKYPI</scp> identified in <i>Bacillus subtilis</i> A26 hydrolysate of thornback ray muscle. International Journal of Food Science and Technology, 2016, 51, 1604-1609.	1.3	21
241	Free amino acids and bioactive peptides profile of Pastırma during its processing. Food Research International, 2016, 89, 194-201.	2.9	21
242	Specificity of the second binding protein of the peptide ABC-transporter (Dpp) ofLactococcus lactisIL1403. FEMS Microbiology Letters, 2003, 227, 33-38.	0.7	20
243	An enzyme sensor for the determination of total amines in dry-fermented sausages. Journal of Food Engineering, 2011, 106, 166-169.	2.7	20
244	Gastrointestinal Endogenous Protein-Derived Bioactive Peptides: An in Vitro Study of Their Gut Modulatory Potential. International Journal of Molecular Sciences, 2016, 17, 482.	1.8	20
245	Aminopeptidase Activities from Lactobacillus sake in Models of Curing Ingredients and Processing Conditions for Dry Sausage. Journal of Food Science, 1997, 62, 1211-1234.	1.5	19
246	Effects of sire type and sex on pork muscle exopeptidase activity, natural dipeptides and free amino acids. Journal of the Science of Food and Agriculture, 1999, 79, 1280-1284.	1.7	19
247	Effects of curing agents and the stability of a glutaminase from Debaryomyces spp Food Chemistry, 2004, 86, 385-389.	4.2	19
248	Blocking agents for ELISA quantification of compounds coming from bovine muscle crude extracts. European Food Research and Technology, 2007, 224, 623-628.	1.6	19
249	Hydrophilic Interaction Chromatography (HILIC) in the Analysis of Relevant Quality and Safety Biochemical Compounds in Meat, Poultry and Processed Meats. Food Analytical Methods, 2011, 4, 121-129.	1.3	19
250	Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1-7.	1.1	19
251	Study of the White Film Developed on the Cut Surface of Vacuum-packed Dry-cured Ham Slices. Journal of Food Science, 1990, 55, 1189-1191.	1.5	18
252	Generation of volatile flavour compounds as affected by the chemical composition of different dry-cured ham sections. European Food Research and Technology, 2006, 222, 658-666.	1.6	18

#	Article	IF	CITATIONS
253	Simultaneous process to isolate actomyosin and actin from post-rigor porcine skeletal muscle. Food Chemistry, 2007, 101, 1005-1011.	4.2	18
254	Development of a dielectric spectroscopy technique for the determination of key biochemical markers of meat quality. Food Chemistry, 2011, 127, 228-233.	4.2	18
255	Evolution of proteolytic and physico-chemical characteristics of Norwegian dry-cured ham during its processing. Meat Science, 2016, 121, 243-249.	2.7	18
256	Differences in pig genotypes influence the generation of peptides in dry-cured ham processing. Food Research International, 2016, 86, 74-82.	2.9	18
257	The physiological activity of bioactive peptides obtained from meat and meat by-products. Advances in Food and Nutrition Research, 2021, 97, 147-185.	1.5	18
258	LIPID COMPOSITION OF PORK MUSCLE AS AFFECTED BY SIRE GENETIC TYPE. Journal of Food Biochemistry, 2002, 26, 91-102.	1.2	17
259	Analysis of Nitrite and Nitrate in Foods. Advances in Food and Nutrition Research, 2017, 81, 65-107.	1.5	17
260	Evaluation of main post-translational modifications occurring in naturally generated peptides during the ripening of Spanish dry-cured ham. Food Chemistry, 2020, 332, 127388.	4.2	17
261	Stability of β-agonist methyl boronic derivatives before gas chromatography–mass spectrometry analysis. Analytica Chimica Acta, 2005, 529, 293-297.	2.6	16
262	Effect of brine thawing/salting on endogenous enzyme activity and sensory quality of Iberian dry-cured ham. Food Microbiology, 2012, 29, 247-254.	2.1	16
263	Strategies for Salt Reduction in Foods. Recent Patents on Food, Nutrition & Agriculture, 2012, 4, 19-25.	0.5	16
264	Use of porous glass fiber as a support for biocatalyst immobilization. Biotechnology Letters, 1986, 8, 785-790.	1.1	14
265	EFFECT OF CARNOSINE, ANSERINE AND OTHER ENDOGENOUS SKELETAL PEPTIDES ON THE ACTIVITY OF PORCINE MUSCLE ALANYL AND ARGINYL AMINOPEPTIDASES. Journal of Food Biochemistry, 2000, 24, 69-78.	1.2	14
266	Effect of brine thawing/salting for time reduction in Spanish dry-cured ham manufacturing on proteolysis and lipolysis during salting and post-salting periods. European Food Research and Technology, 2006, 222, 509-515.	1.6	14
267	Low frequency dielectric measurements to assess post-mortem ageing of pork meat. LWT - Food Science and Technology, 2011, 44, 1465-1472.	2.5	14
268	Controlled enzymatic hydrolysis of pollen protein as promising tool for production of potential bioactive peptides. Journal of Food Biochemistry, 2019, 43, e12819.	1.2	14
269	Impact of Simulated Gastrointestinal Digestion on the Biological Activity of an Alcalase Hydrolysate of Orange Seed (Siavaraze, Citrus sinensis) by-Products. Foods, 2020, 9, 1217.	1.9	14
270	Structure-function relationship of small peptides generated during the ripening of Spanish dry-cured ham: Peptidome, molecular stability and computational modelling. Food Chemistry, 2022, 375, 131673.	4.2	14

#	Article	IF	CITATIONS
271	Myoglobin as an Endogenous Inhibitor of Proteolytic Muscle Enzymes. Journal of Agricultural and Food Chemistry, 1996, 44, 3453-3456.	2.4	13
272	Processed Pork Meat Flavors. , 0, , 281-301.		13
273	Microbial Hazards in Foods: Food-Borne Infections and Intoxications. , 0, , 481-500.		13
274	Evolution of oxidised peptides during the processing of 9 months Spanish dry-cured ham. Food Chemistry, 2018, 239, 823-830.	4.2	13
275	Perspectives in the Use of Peptidomics in Ham. Proteomics, 2018, 18, e1700422.	1.3	13
276	In vitro oxidation promoted by chlorpyrifos residues on myosin and chicken breast proteins. Food Chemistry, 2020, 326, 126922.	4.2	13
277	Identification and Quantitation of Bioactive and Taste-Related Dipeptides in Low-Salt Dry-Cured Ham. International Journal of Molecular Sciences, 2022, 23, 2507.	1.8	13
278	Oligopeptides hydrolysed by muscle dipeptidyl peptidases can generate angiotensin-I converting enzyme inhibitory dipeptides. European Food Research and Technology, 2007, 224, 785-790.	1.6	12
279	Possible biological markers of the time of processing of dry-cured ham. Meat Science, 2011, 89, 536-539.	2.7	12
280	Dry-Cured Ham. , 2013, , 147-160.		12
281	Beneficial effects of fermented sardinelle protein hydrolysates on hypercaloric diet induced hyperglycemia, oxidative stress and deterioration of kidney function in wistar rats. Journal of Food Science and Technology, 2017, 54, 313-325.	1.4	12
282	Distinct fatty acid composition of some edible by-products from bovines fed high or low silage diets. Food Science and Technology International, 2017, 23, 209-221.	1.1	12
283	Assessment of Cholesterol, Glycemia Control and Short- and Long-Term Antihypertensive Effects of Smooth Hound Viscera Peptides in High-Salt and Fructose Diet-Fed Wistar Rats. Marine Drugs, 2019, 17, 194.	2.2	12
284	Fluidized bed biomethanation of acetic acid. Applied Microbiology and Biotechnology, 1986, 23, 336.	1.7	11
285	Evolution of hydrophobic polypeptides during the ageing of exudative and non-exudative pork meat. Meat Science, 2001, 57, 395-401.	2.7	11
286	Bioactive Peptides in Foods. , 2016, , 395-400.		11
287	Effect of Dietary Conjugated Linoleic Acid and Monounsaturated Fatty Acid Content on Pig Muscle and Adipose Tissue Lipase and Esterase Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 9241-9247.	2.4	10
288	Biochemistry of Meat and Fat. , 0, , 51-58.		10

#	Article	IF	CITATIONS
289	Molecular forces study and microstructure and gelling properties of smooth hound protein gels prepared by heat-induced gelation process: Effect of pH variation on textural and functional properties. Process Biochemistry, 2016, 51, 1511-1520.	1.8	10
290	The Storage and Preservation of Meat. , 2017, , 265-296.		10
291	Differences in peptide oxidation between muscles in 12â€ ⁻ months Spanish dry-cured ham. Food Research International, 2018, 109, 343-349.	2.9	10
292	Possible Uses of Processed Slaughter Byproducts. , 2019, , 145-160.		10
293	Influence of Muscle Type on Physicochemical Parameters, Lipolysis, Proteolysis, and Volatile Compounds throughout the Processing of Smoked Dry-Cured Ham. Foods, 2021, 10, 1228.	1.9	10
294	Veterinary Drugs and Growth Promoters Residues in Meat and Processed Meats. , 2009, , 365-390.		10
295	Dry-Fermented Sausages: An Overview. , 0, , 321-325.		9
296	Biotechnology of Flavor Generation in Fermented Meats. , 2008, , 199-215.		9
297	Pepsin Hydrolysis of Orange By-Products for the Production of Bioactive Peptides with Gastrointestinal Resistant Properties. Foods, 2021, 10, 679.	1.9	9
298	Quality Aspects of Pork Meat and Its Nutritional Impact. Advances in Experimental Medicine and Biology, 2004, 542, 25-31.	0.8	9
299	Problems associated with the assay of cathepsin D in meat and meat products. Food Chemistry, 1991, 40, 87-91.	4.2	8
300	Biogenic Polyamines Affect Activity of Aminopeptidase B and Alanyl Aminopeptidase from Porcine Skeletal Muscle. Journal of Food Science, 1996, 61, 13-14.	1.5	8
301	Meat: Fermented Meats. , 0, , 399-415.		8
302	Protease (PrA and PrB) and prolyl and arginyl aminopeptidase activities from Debaryomyces hansenii as a function of growth phase and nutrient sources. International Journal of Food Microbiology, 2006, 107, 20-26.	2.1	8
303	Curing. , 0, , 125-141.		8
304	Retention Characteristics of Four Different HILIC Stationary Phases in the Analysis of Meat Polar Compounds. Food Analytical Methods, 2012, 5, 604-612.	1.3	8
305	Edible By-products. , 2017, , 679-696.		8
306	Characterization of Umami Dry-Cured Ham-Derived Dipeptide Interaction with Metabotropic Glutamate Receptor (mGluR) by Molecular Docking Simulation. Applied Sciences (Switzerland), 2021, 11, 8268.	1.3	8

#	Article	IF	CITATIONS
307	Characterization of antioxidant efficacy of peptide extracts as affected by peptide interactions during the ripening of Spanish dry-cured ham. Food Research International, 2021, 147, 110525.	2.9	8
308	Beneficial Impact of Pork Dry-Cured Ham Consumption on Blood Pressure and Cardiometabolic Markers in Individuals with Cardiovascular Risk. Nutrients, 2022, 14, 298.	1.7	8
309	EFFECT OF THE REDOX POTENTIAL ON THE MUSCLE ENZYME SYSTEM. Journal of Food Biochemistry, 1992, 16, 207-215.	1.2	7
310	Innovations in traditional foodsEFFOST 2005 conference. Trends in Food Science and Technology, 2006, 17, 470-470.	7.8	7
311	Liquid Chromatography for the Rapid Screening of Growth Promoters Residues in Meat. Food Analytical Methods, 2008, 1, 2-9.	1.3	7
312	Reducing salt in processed meat products. , 2011, , 331-345.		7
313	Biochemistry of Fermented Meat. , 2012, , 331-343.		7
314	Selective Determination of Lysine in Dry-Cured Meats Using a Sensor Based on Lysine-α-Oxidase Immobilised on a Nylon Membrane. Food Analytical Methods, 2016, 9, 2484-2490.	1.3	7
315	Recent Patents for Sodium Reduction in Foods. Recent Patents on Food, Nutrition & Agriculture, 2010, 1, 80-86.	0.5	7
316	Hydrolysis of maltose and cornstrarch by glucoamylase immobilized in porous glass fibres and beads. Process Biochemistry, 1992, 27, 177-181.	1.8	6
317	Comparison of aminopeptidase inhibition by amino acids in human and porcine skeletal muscle tissues in vitro. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1996, 115, 445-450.	0.7	6
318	Sensory Quality of Meat Products. , 0, , 303-328.		6
319	Reprint of: An enzyme sensor for the determination of total amines in dry-fermented sausages. Journal of Food Engineering, 2012, 110, 324-327.	2.7	6
320	Deamidation post-translational modification in naturally generated peptides in Spanish dry-cured ham. Food Chemistry, 2017, 229, 710-715.	4.2	6
321	Flavor Differences due to Processing in Dry-Cured and Other Ham Products Using Conducting Polymers (Electronic Nose). , 1999, , 169-183.		6
322	Chicken-derived tripeptide KPC (Lys-Pro-Cys) stabilizes alcohol dehydrogenase (ADH) through peptide-enzyme interaction. LWT - Food Science and Technology, 2022, 161, 113376.	2.5	6
323	Structured Meat Products. , 2008, , 501-523.		6
324	Aminopeptidase interference in the assay of muscle cathepsin H. Journal of the Science of Food and Agriculture, 1991, 54, 651-653.	1.7	5

#	Article	IF	CITATIONS
325	Immobilization of glucoamylase in porous glass fibers. Journal of Chemical Technology and Biotechnology, 1987, 40, 275-284.	1.6	5
326	Ham. , 0, , 233-249.		5
327	Strategies for Salt Reduction in Foods. Recent Patents on Food, Nutrition & Agriculture, 2012, 4, 19-25.	0.5	5
328	Biosensor Based on Immobilized Nitrate Reductase for the Quantification of Nitrate Ions in Dry-Cured Ham. Food Analytical Methods, 2017, 10, 3481-3486.	1.3	5
329	Essential Amino Acids. , 2012, , 3-24.		5
330	Identification of dipeptides by MALDI-ToF mass spectrometry in long-processing Spanish dry-cured ham. Food Chemistry Molecular Sciences, 2021, 3, 100048.	0.9	5
331	EFFECT OF MYOGLOBIN ON THE MUSCLE LIPASE SYSTEM. Journal of Food Biochemistry, 1996, 20, 87-92.	1.2	4
332	Peptide generation from casein hydrolysis by immobilised porcine cathepsins. Food Chemistry, 2005, 92, 227-233.	4.2	4
333	Sausages. , 0, , 251-264.		4
334	Sodium reduction in foods: a necessity for a growing sector of the population. Trends in Food Science and Technology, 2007, 18, 583.	7.8	4
335	Symposium on meat safety: From abattoir to consumer. Meat Science, 2008, 78, 1.	2.7	4
336	Immunology-Based Techniques for the Detection of Veterinary Drug Residues in Foods. , 2008, , 361-373.		4
337	Use of visible spectroscopy to assess colour development during ageing of fresh pork from different quality classes. International Journal of Food Science and Technology, 2010, 45, 1710-1716.	1.3	4
338	Sources of variability in the analysis of meat nutrient coenzyme Q10Âfor food composition databases. Food Control, 2015, 48, 151-154.	2.8	4
339	Patents for ELISA Tests to Detect Antibiotic Residues in Foods of Animal Origin. Recent Patents on Food, Nutrition & Agriculture, 2011, 3, 110-114.	0.5	4
340	Scanning electron microscopic observation of porous glass fibers with immobilized glucoamylase. Applied Biochemistry and Biotechnology, 1987, 16, 71-77.	1.4	3
341	Methane generation from chemically pretreated cellulose by anaerobic fluidized-bed reactors. Biological Wastes, 1989, 29, 201-210.	0.3	3
342	Polyamines Affect Activity of Aminopeptidases from Lactobacillus sake. Journal of Food Science, 1997, 62, 870-872.	1.5	3

#	Article	IF	CITATIONS
343	Alternative Proteins as a Source of Bioactive Peptides: The Edible Snail and Generation of Hydrolysates Containing Peptides with Bioactive Potential for Use as Functional Foods. Foods, 2021, 10, 276.	1.9	3
344	New Approaches for the Development of Functional Meat Products. Food Additives, 2006, , 275-308.	0.1	3
345	The stability of dry ured hamâ€derived peptides and its antiâ€inflammatory effect in RAW264.7 macrophage cells. International Journal of Food Science and Technology, 2023, 58, 1575-1585.	1.3	3
346	Hydrolysis of alanine oligopeptides by porcine muscle alanyl aminopeptidase. European Food Research and Technology, 1999, 208, 264-266.	0.6	2
347	Characterization of Proteolysis. , 0, , 113-134.		2
348	Rapid Liquid Chromatographic Techniques for Detection of Key (Bio)Chemical Markers. , 0, , 229-251.		2
349	Ingredients. , 0, , 59-76.		2
350	Fermented Meat Production. , 0, , 265-279.		2
351	Improving the sensory quality of cured and fermented meat products. , 2011, , 508-526.		2
352	Biochemistry of Raw Meat and Poultry. , 2012, , 285-302.		2
353	Optimization of Muscle Enzyme Colorimetric Tests for Rapid Detection of Exudative Pork Meats. Food Analytical Methods, 2014, 7, 1903-1907.	1.3	2
354	Editorial overview: Food bioprocessing. Current Opinion in Food Science, 2015, 1, vii-viii.	4.1	2
355	2nd International Symposium on Fermented Meat. International Journal of Food Microbiology, 2015, 212, 1.	2.1	2
356	Dry-Cured Meats. , 2016, , .		2
357	Food and Nutritional Analysis—Dairy Products â~†. , 2018, , 397-397.		2
358	Protein Oxidation. , 2019, , 41-47.		2
359	Preface. Advances in Food and Nutrition Research, 2019, 87, xi-xii.	1.5	2
360	Residues of harmful chemicals and their detection techniques. , 2020, , 173-183.		2

#	Article	IF	CITATIONS
361	Essential Amino Acids. , 2009, , 287-307.		2
362	Simple, Sensitive Assay for Microbial Aminopeptidase. Journal of Food Science, 1997, 62, 583-585.	1.5	1
363	Flavor Development. , 0, , 153-172.		1
364	Nutritional Properties. , 0, , 173-187.		1
365	Safety and quality of traditional foods. Trends in Food Science and Technology, 2005, 16, 218.	7.8	1
366	Innovations in traditional foodsEFFOST 2005 Conference. Food Chemistry, 2007, 102, 435-435.	4.2	1
367	Sensory Evaluation of Meat Products. , 0, , 457-468.		1
368	Response to the letter to the editors of Dr. Demeyer. Meat Science, 2010, 86, 531.	2.7	1
369	foodInnova 2010: report on the International Conference on Food Innovation. Trends in Food Science and Technology, 2011, 22, 49-49.	7.8	1
370	Proteins and Bioactive Peptides in High Protein Content Foods. Foods, 2021, 10, 1186.	1.9	1
371	Proteomics and Peptidomics for Food Safety. , 2021, , 149-156.		1
372	Pattern of Muscle Proteolytic and Lipolytic Enzymes from Light and Heavy Pigs. Journal of the Science of Food and Agriculture, 1996, 71, 124-128.	1.7	1
373	Sodium Replacers. , 2012, , 877-884.		1
374	Foreword and highlights. Food Chemistry, 1997, 59, 489-490.	4.2	0
375	Description of Main Muscle Characteristics. , 0, , 7-26.		0
376	Characterization of Lipolysis. , 0, , 135-151.		0
377	Effect of Raw Materials and Processing on Quality. , 0, , 189-210.		0
378	Main Defects and Preventive Measures. , 0, , 211-220.		0

#	Article	IF	CITATIONS
379	Analytical Tools for Assessing the Chemical Safety of Meat and Poultry. , 2012, , 1-67.		0
380	Analytical Tools for Assessing the Chemical Safety of Meat and Poultry. , 2012, , .		0
381	Preface. Advances in Food and Nutrition Research, 2016, 78, xi.	1.5	0
382	Preface. Advances in Food and Nutrition Research, 2016, 79, xi.	1.5	0
383	Preface. Advances in Food and Nutrition Research, 2018, 84, xi-xii.	1.5	0
384	Peptidomics and proteomics data of oxidised peptides from in vitro gastrointestinal digestion of chicken breast exposed to chlorpyrifos. Data in Brief, 2020, 32, 106160.	0.5	0
385	Methodologies for peptidomics: Identification and quantification. , 2021, , 87-102.		0
386	Analysis of Meat-Containing Food. Food Additives, 2004, , 1941-1959.	0.1	0
387	Analysis of Meat Quality. Food Additives, 2004, , 1961-1977.	0.1	0
388	Primary Separation: Chromatography. , 2013, , 69-81.		0
389	Preface. Advances in Food and Nutrition Research, 2017, 82, xi-xii.	1.5	0
390	Sausages, types of dry and semi-dry. , 2022, , .		0
391	Veterinary drug residue analysis. , 2022, , .		0