
François Pimont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7105580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate change impact on future wildfire danger and activity in southern Europe: a review. Annals of Forest Science, 2020, 77, 1.	2.0	170
2	Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 2020, 10, 13790.	3.3	124
3	Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sensing of Environment, 2010, 114, 1403-1415.	11.0	119
4	Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sensing of Environment, 2018, 205, 210-223.	11.0	75
5	How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agricultural and Forest Meteorology, 2018, 262, 391-401.	4.8	73
6	Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC. Annals of Forest Science, 2011, 68, 523.	2.0	72
7	Validation of FIRETEC wind-flows over a canopy and a fuel-break. International Journal of Wildland Fire, 2009, 18, 775.	2.4	66
8	Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models. Fire Technology, 2016, 52, 221-237.	3.0	66
9	Fires Following Bark Beetles: Factors Controlling Severity and Disturbance Interactions in Ponderosa Pine. Fire Ecology, 2017, 13, 1-23.	3.0	53
10	Numerical Investigation of Aggregated Fuel Spatial Pattern Impacts on Fire Behavior. Land, 2017, 6, 43.	2.9	49
11	Why is the effect of live fuel moisture content on fire rate of spread underestimated in field experiments in shrublands?. International Journal of Wildland Fire, 2019, 28, 127.	2.4	46
12	Fuel bulk density and fuel moisture content effects on fire rate of spread: a comparison between FIRETEC model predictions and experimental results in shrub fuels. Journal of Fire Sciences, 2012, 30, 277-299.	2.0	45
13	Coupled slope and wind effects on fire spread with influences of fire size: a numerical study using FIRETEC. International Journal of Wildland Fire, 2012, 21, 828.	2.4	43
14	Projections of fire danger under climate change over France: where do the greatest uncertainties lie?. Climatic Change, 2020, 160, 479-493.	3.6	43
15	Incorporating field wind data into FIRETEC simulations of the International Crown Fire Modeling Experiment (ICFME): preliminary lessons learned. Canadian Journal of Forest Research, 2012, 42, 879-898.	1.7	42
16	Modeling fuels and fire effects in 3D: Model description and applications. Environmental Modelling and Software, 2016, 80, 225-244.	4.5	40
17	SurEau: a mechanistic model of plant water relations under extreme drought. Annals of Forest Science, 2021, 78, 1.	2.0	40
18	Using periodic line fires to gain a new perspective on multi-dimensional aspects of forward fire spread. Agricultural and Forest Meteorology, 2012, 157, 60-76.	4.8	38

François Pimont

#	Article	IF	CITATIONS
19	Effects of fuel spatial distribution on wildland fire behaviour. International Journal of Wildland Fire, 2021, 30, 179.	2.4	38
20	Attributing Increases in Fire Weather to Anthropogenic Climate Change Over France. Frontiers in Earth Science, 2020, 8, .	1.8	36
21	Exploring three-dimensional coupled fire–atmosphere interactions downwind of wind-driven surface fires and their influence on backfires using the HIGRAD-FIRETEC model. International Journal of Wildland Fire, 2011, 20, 734.	2.4	35
22	Impact of local soil and subsoil conditions on inter-individual variations in tree responses to drought: insights from Electrical Resistivity Tomography. Science of the Total Environment, 2020, 698, 134247.	8.0	35
23	Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR. Remote Sensing of Environment, 2018, 215, 343-370.	11.0	29
24	Using a fire propagation model to assess the efficiency of prescribed burning in reducing the fire hazard. Ecological Modelling, 2011, 222, 1502-1514.	2.5	28
25	Prediction of regional wildfire activity in the probabilistic Bayesian framework of Firelihood. Ecological Applications, 2021, 31, e02316.	3.8	25
26	Effect of vegetation heterogeneity on radiative transfer in forest fires. International Journal of Wildland Fire, 2009, 18, 536.	2.4	24
27	Estimating Leaf Bulk Density Distribution in a Tree Canopy Using Terrestrial LiDAR and a Straightforward Calibration Procedure. Remote Sensing, 2015, 7, 7995-8018.	4.0	22
28	Enhanced Measurements of Leaf Area Density with T-LiDAR: Evaluating and Calibrating the Effects of Vegetation Heterogeneity and Scanner Properties. Remote Sensing, 2018, 10, 1580.	4.0	22
29	Modeling thinning effects on fire behavior with STANDFIRE. Annals of Forest Science, 2018, 75, 1.	2.0	21
30	A Cautionary Note Regarding the Use of Cumulative Burnt Areas for the Determination of Fire Danger Index Breakpoints. International Journal of Wildland Fire, 2019, 28, 254.	2.4	17
31	Representativeness of wind measurements in fire experiments: Lessons learned from large-eddy simulations in a homogeneous forest. Agricultural and Forest Meteorology, 2017, 232, 479-488.	4.8	16
32	Sensitivity of voxel-based estimations of leaf area density with terrestrial LiDAR to vegetation structure and sampling limitations: A simulation experiment. Remote Sensing of Environment, 2021, 257, 112354.	11.0	16
33	Live fuel moisture content (LFMC) time series for multiple sites and species in the French Mediterranean area since 1996. Annals of Forest Science, 2018, 75, 1.	2.0	14
34	Mitigating occlusion effects in Leaf Area Density estimates from Terrestrial LiDAR through a specific kriging method. Remote Sensing of Environment, 2020, 245, 111836.	11.0	14
35	Accounting for Wood, Foliage Properties, and Laser Effective Footprint in Estimations of Leaf Area Density from Multiview-LiDAR Data. Remote Sensing, 2019, 11, 1580.	4.0	13
36	Comparison of postfire mortality in endemic Corsican black pine (Pinus nigra ssp. laricio) and its direct competitor (Pinus pinaster). Annals of Forest Science, 2011, 68, 425-432.	2.0	10

François Pimont

#	Article	IF	CITATIONS
37	Estimation of vertical plant area density from single return terrestrial laser scanning point clouds acquired in forest environments. Remote Sensing of Environment, 2022, 279, 113115.	11.0	10
38	A simple model for shrub-strata-fuel dynamics in Quercus coccifera L. communities. Annals of Forest Science, 2018, 75, 1.	2.0	6
39	Pressure-Gradient Forcing Methods for Large-Eddy Simulations of Flows in the Lower Atmospheric Boundary Layer. Atmosphere, 2020, 11, 1343.	2.3	6
40	Effects of small scale heterogeneity of vegetation on radiative transfer in forest fire. Forest Ecology and Management, 2006, 234, S88.	3.2	3
41	A Bioeconomic Projection of Climateâ€Induced Wildfire Risk in the Forest Sector. Earth's Future, 2022, 10, .	6.3	2
42	Les incendies de forêt catastrophiques. Annales Des Mines - Responsabilité Et Environnement, 2020, Nº 98, 29-35.	0.1	1
43	Evaluation of the Vegetation Optical Depth Index on Monitoring Fire Risk in the Mediterranean Region. , 2018, , .		0
44	Reply to Cruz and Alexander: Comments on "Evaluating Crown Fire Rate of Spread Predictions from	3.0	0

Physics-Based Models― Fire Technology, 2019, 55, 1927-1929. 44