Paramsothy Jeyakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7105210/publications.pdf

Version: 2024-02-01

566801 414034 1,127 36 15 32 g-index citations h-index papers 37 37 37 1204 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Critical Reviews in Environmental Science and Technology, 2019, 49, 1027-1078.	6.6	298
2	Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H2O2 for ciprofloxacin removal from aqueous solution. Journal of Hazardous Materials, 2019, 380, 120848.	6.5	119
3	Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Science of the Total Environment, 2021, 755, 142582.	3.9	109
4	Microorganisms-carbonaceous materials immobilized complexes: Synthesis, adaptability and environmental applications. Journal of Hazardous Materials, 2021, 416, 125915.	6.5	71
5	Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environmental Geochemistry and Health, 2020, 42, 1543-1567.	1.8	55
6	Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. Journal of Environmental Management, 2022, 313, 114973.	3.8	53
7	Effect of biofertilizer and wheat straw biochar application on nitrous oxide emission and ammonia volatilization from paddy soil. Environmental Pollution, 2021, 275, 116640.	3.7	40
8	Supplying silicon alters microbial community and reduces soil cadmium bioavailability to promote health wheat growth and yield. Science of the Total Environment, 2021, 796, 148797.	3.9	35
9	Organic carbon content controls the severity of water repellency and the critical moisture level across New Zealand pasture soils. Geoderma, 2019, 338, 281-290.	2.3	33
10	Effect of soil cadmium on root organic acid secretion by forage crops. Environmental Pollution, 2021, 268, 115839.	3.7	29
11	Effect of pyrolysis temperature on the bioavailability of heavy metals in rice straw-derived biochar. Environmental Science and Pollution Research, 2021, 28, 2198-2208.	2.7	28
12	Responses of rice (Oryza sativa L.) plant growth, grain yield and quality, and soil properties to the microplastic occurrence in paddy soil. Journal of Soils and Sediments, 2022, 22, 2174-2183.	1.5	23
13	Temporal dynamics of soil water repellency and its impact on pasture productivity. Agricultural Water Management, 2014, 143, 82-92.	2.4	21
14	Effect of simulated acid rain on fluorine mobility and the bacterial community of phosphogypsum. Environmental Science and Pollution Research, 2018, 25, 15336-15348.	2.7	21
15	Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. in contaminated soils. Biochar, 2022, 4, 1 .	6.2	21
16	Copper and zinc spiking of biosolids: effect of incubation period on metal fractionation and speciation and microbial activity. Environmental Chemistry, 2008, 5, 347.	0.7	15
17	Bioavailability of copper and zinc to poplar and microorganisms in a biosolids-amended soil. Soil Research, 2010, 48, 459.	0.6	15
18	Lithological mapping of Waiotapu Geothermal Field (New Zealand) using hyperspectral and thermal remote sensing and ground exploration techniques. Geothermics, 2021, 96, 102195.	1.5	15

#	Article	lF	Citations
19	Influence of Soil Moisture Status on Soil Cadmium Phytoavailability and Accumulation in Plantain (Plantago lanceolata). Soil Systems, 2018, 2, 9.	1.0	13
20	A novel approach to quantify the impact of soil water repellency on run-off and solute loss. Geoderma, 2014, 221-222, 121-130.	2.3	12
21	Removal of vanadium from aquatic environment using phosphoric acid modified rice straw. Bioremediation Journal, 2020, 24, 80-89.	1.0	12
22	Soil cadmium and New Zealand dairy farms: Impact of whole-farm contaminant variability on environmental management. Agriculture, Ecosystems and Environment, 2018, 254, 282-291.	2.5	10
23	Cadmium in soils under pasture predicted by soil spectral reflectance on two dairy farms in New Zealand. Geoderma Regional, 2018, 13, 26-34.	0.9	10
24	Defining a standard method to measure the total and bioavailable concentration of fluorine in New Zealand soils. Microchemical Journal, 2018, 142, 94-101.	2.3	9
25	Mercury resistance and plant growth promoting traits of endophytic bacteria isolated from mercury-contaminated soil. Bioremediation Journal, 2022, 26, 208-227.	1.0	9
26	Technical solutions for minimizing wheat grain cadmium: A field study in North China. Science of the Total Environment, 2022, 818, 151791.	3.9	6
27	Forage crops and cadmium: How changing farming systems might impact cadmium accumulation in animals. Science of the Total Environment, 2022, 827, 154256.	3.9	6
28	Being applied at rice or wheat season impacts biochar's effect on gaseous nitrogen pollutants from the wheat growth cycle. Environmental Pollution, 2022, 306, 119409.	3.7	6
29	Comparative tolerance of Pinus radiata and microbial activity to copper and zinc in a soil treated with metal-amended biosolids. Environmental Science and Pollution Research, 2014, 21, 3254-3263.	2.7	5
30	Repellency-induced runoff from New Zealand hill country under pasture: A plot study. Agricultural Water Management, 2018, 201, 83-90.	2.4	5
31	Tsunami Impacts and Rehabilitation of Groundwater Supply: Lessons Learned from Eastern Sri Lanka. , 2010, , 82-99.		5
32	Bioavailable Cu can influence nitrification rate in New Zealand dairy farm soils. Journal of Soils and Sediments, 2022, 22, 916-930.	1.5	5
33	A comparison of three nitrate leaching mitigation treatments with dicyandiamide using lysimeters. New Zealand Journal of Agricultural Research, 2022, 65, 547-560.	0.9	4
34	Biochar can Increase Chinese Cabbage (Brassica oleracea L.) Yield, Decrease Nitrogen and Phosphorus Leaching Losses in Intensive Vegetable Soil. Phyton, 2022, 91, 197-206.	0.4	4
35	Endophytic bacteria promote biomass production and mercury-bioaccumulation of Bermuda grass and Indian goosegrass. International Journal of Phytoremediation, 2022, 24, 1184-1192.	1.7	3
36	Fluorine and white clover: Assessing fluorine's impact on Rhizobium leguminosarum. Journal of Environmental Quality, 2020, 49, 987-999.	1.0	1