Michael Biehl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/71052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supervised learning in the presence of concept drift: a modelling framework. Neural Computing and Applications, 2022, 34, 101-118.	5.6	6
2	A Learning Vector Quantization Architecture for Transfer Learning Based Classification in Case of Multiple Sources by Means of Null-Space Evaluation. Lecture Notes in Computer Science, 2022, , 354-364.	1.3	1
3	DECORAS: detection and characterization of radio-astronomical sources using deep learning. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5891-5907.	4.4	6
4	Hidden unit specialization in layered neural networks: ReLU vs. sigmoidal activation. Physica A: Statistical Mechanics and Its Applications, 2021, 564, 125517.	2.6	29
5	Complex-Valued Embeddings of Generic Proximity Data. Lecture Notes in Computer Science, 2021, , 14-23.	1.3	0
6	The Statistical Physics of Learning Revisited: Typical Learning Curves in Model Scenarios. Lecture Notes in Computer Science, 2021, , 128-142.	1.3	0
7	Comment on "A Modern Assessment of Cancer Risk in Adrenal Incidentalomas: Analysis of 2219 Patients―by Kahramangil B et al Annals of Surgery, 2021, 274, e887-e888.	4.2	0
8	Matrix Relevance Learning From Spectral Data for Diagnosing Cassava Diseases. IEEE Access, 2021, 9, 83355-83363.	4.2	17
9	Learning vector quantization and relevances in complex coefficient space. Neural Computing and Applications, 2020, 32, 18085-18099.	5.6	3
10	Adaptive basis functions for prototype-based classification of functional data. Neural Computing and Applications, 2020, 32, 18213-18223.	5.6	5
11	Urine Steroid Metabolomics as a Novel Tool for Detection of Recurrent Adrenocortical Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e307-e318.	3.6	45
12	Urine metabolomic phenotyping for detection of adrenocortical carcinoma: still a long way to go – Authors' reply. Lancet Diabetes and Endocrinology,the, 2020, 8, 877-878.	11.4	2
13	Data-Driven Supervised Learning for Life Science Data. Frontiers in Applied Mathematics and Statistics, 2020, 6, .	1.3	8
14	An application of generalized matrix learning vector quantization in neuroimaging. Computer Methods and Programs in Biomedicine, 2020, 197, 105708.	4.7	9
15	Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: a prospective test validation study. Lancet Diabetes and Endocrinology,the, 2020, 8, 773-781.	11.4	129
16	Tissue- and development-stage–specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in normal and cancer samples. Nucleic Acids Research, 2020, 48, 7079-7098.	14.5	12
17	Feature relevance determination for ordinal regression in the context of feature redundancies and privileged information. Neurocomputing, 2020, 416, 266-279.	5.9	4
18	Accurate nonâ€invasive diagnosis and staging of nonâ€alcoholic fatty liver disease using the urinary steroid metabolome. Alimentary Pharmacology and Therapeutics, 2020, 51, 1188-1197.	3.7	13

#	Article	lF	CITATIONS
19	Prototype-Based Classifiers in the Presence of Concept Drift: A Modelling Framework. Advances in Intelligent Systems and Computing, 2020, , 210-221.	0.6	1
20	Early detection of plant diseases using spectral data. , 2020, , .		5
21	Structure Preserving Encoding of Non-euclidean Similarity Data. , 2020, , .		4
22	A low-cost 3-D printed smartphone add-on spectrometer for diagnosis of crop diseases in field. , 2020, , .		1
23	Galaxy classification: A machine learning analysis of GAMA catalogue data. Neurocomputing, 2019, 342, 172-190.	5.9	6
24	Analysis of feature relevance using an image quality index applied to digital mammography. , 2019, , .		1
25	A Computer Vision Pipeline that Uses Thermal and RGB Images for the Recognition of Holstein Cattle. Lecture Notes in Computer Science, 2019, , 108-119.	1.3	5
26	Learning vector quantization classifiers for ROC-optimization. Computational Statistics, 2018, 33, 1173-1194.	1.5	8
27	Statistical Mechanics of On-Line Learning Under Concept Drift. Entropy, 2018, 20, 775.	2.2	15
28	Effect estimate comparison between the prescription sequence symmetry analysis (PSSA) and parallel group study designs: A systematic review. PLoS ONE, 2018, 13, e0208389.	2.5	6
29	Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning. , 2017, , .		9
30	Marker selection for the detection of trisomy 21 using generalized matrix learning vector quantization. , 2017, , .		0
31	Empirical evaluation of gradient methods for matrix learning vector quantization. , 2017, , .		4
32	Adaptive basis functions for prototype-based classification of functional data. , 2017, , .		1
33	Prototypes and matrix relevance learning in complex fourier space. , 2017, , .		1
34	Biomedical Applications of Prototype Based Classifiers and Relevance Learning. Lecture Notes in Computer Science, 2017, , 3-23.	1.3	3
35	Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight, 2017, 2,	5.0	187
36	Sequence Learning in Unsupervised and Supervised Vector Quantization Using Hankel Matrices. Lecture Notes in Computer Science, 2017, , 131-142.	1.3	1

#	Article	IF	CITATIONS
37	Prototypeâ€based models in machine learning. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 92-111.	2.8	81
38	Predicting recurrence in clear cell Renal Cell Carcinoma: Analysis of TCGA data using outlier analysis and generalized matrix LVQ. , 2016, , .		3
39	Prototype-based Models for the Supervised Learning of Classification Schemes. Proceedings of the International Astronomical Union, 2016, 12, 129-138.	0.0	1
40	Odor recognition in robotics applications by discriminative time-series modeling. Pattern Analysis and Applications, 2016, 19, 207-220.	4.6	19
41	Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis. Annals of the Rheumatic Diseases, 2016, 75, 763-771.	0.9	133
42	Prototype-Based Classification for Image Analysis and Its Application to Crop Disease Diagnosis. Advances in Intelligent Systems and Computing, 2016, , 329-339.	0.6	10
43	Classification of FDG-PET Brain Data by Generalized Matrix Relevance LVQ. Lecture Notes in Computer Science, 2016, , 131-141.	1.3	0
44	Modeling spontaneous activity across an excitable epithelium: Support for a coordination scenario of early neural evolution. Frontiers in Computational Neuroscience, 2015, 9, 110.	2.1	7
45	Stationarity of Matrix Relevance LVQ. , 2015, , .		12
46	Inferring Feature Relevances From Metric Learning. , 2015, , .		2
47	Predicting protein phosphorylation from gene expression: top methods from the IMPROVER Species Translation Challenge. Bioinformatics, 2015, 31, 462-470.	4.1	14
48	Inter-species prediction of protein phosphorylation in the sbv IMPROVER species translation challenge. Bioinformatics, 2015, 31, 453-461.	4.1	9
49	A crowd-sourcing approach for the construction of species-specific cell signaling networks. Bioinformatics, 2015, 31, 484-491.	4.1	10
50	MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems With Applications, 2015, 42, 6578-6585.	7.6	241
51	Inter-species inference of gene set enrichment in lung epithelial cells from proteomic and large transcriptomic datasets. Bioinformatics, 2015, 31, 492-500.	4.1	3
52	Learning Vector Quantization with Adaptive Cost-Based Outlier-Rejection. Lecture Notes in Computer Science, 2015, , 772-782.	1.3	4
53	Facial Expression Recognition Using Learning Vector Quantization. Lecture Notes in Computer Science, 2015, , 760-771.	1.3	3
54	Developments in computational intelligence and machine learning. Neurocomputing, 2015, 169, 185-186.	5.9	1

#	Article	IF	CITATIONS
55	Insightful stress detection from physiology modalities using Learning Vector Quantization. Neurocomputing, 2015, 151, 873-882.	5.9	35
56	Non-Euclidean principal component analysis by Hebbian learning. Neurocomputing, 2015, 147, 107-119.	5.9	12
57	Towards Emotion Classification Using Appraisal Modeling. International Journal of Synthetic Emotions, 2015, 6, 40-59.	0.3	6
58	Valid interpretation of feature relevance for linear data mappings. , 2014, , .		5
59	The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell, 2014, 26, 319-330.	16.8	665
60	Distance Measures for Prototype Based Classification. Lecture Notes in Computer Science, 2014, , 100-116.	1.3	18
61	Prototype-Based Classifiers and Their Application in the Life Sciences. Advances in Intelligent Systems and Computing, 2014, , 121-121.	0.6	1
62	Adaptive Matrices and Filters for Color Texture Classification. Journal of Mathematical Imaging and Vision, 2013, 47, 79-92.	1.3	10
63	Critical assessment of automated flow cytometry data analysis techniques. Nature Methods, 2013, 10, 228-238.	19.0	509
64	Regularization and improved interpretation of linear data mappings and adaptive distance measures. , 2013, , .		10
65	Assessment of acrosome state in boar spermatozoa heads using n-contours descriptor and RLVQ. Computer Methods and Programs in Biomedicine, 2013, 111, 525-536.	4.7	10
66	Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization. PLoS ONE, 2013, 8, e59401.	2.5	40
67	Non-Euclidean Principal Component Analysis and Oja's Learning Rule – Theoretical Aspects. Advances in Intelligent Systems and Computing, 2013, , 23-33.	0.6	4
68	Differentiable Kernels in Generalized Matrix Learning Vector Quantization. , 2012, , .		8
69	Texture feature ranking with relevance learning to classify interstitial lung disease patterns. Artificial Intelligence in Medicine, 2012, 56, 91-97.	6.5	29
70	Admire LVQ—Adaptive Distance Measures in Relevance Learning Vector Quantization. KI - Kunstliche Intelligenz, 2012, 26, 391-395.	3.2	7
71	Visualization of processes in self-learning systems. , 2012, , .		2
72	A General Framework for Dimensionality-Reducing Data Visualization Mapping. Neural Computation, 2012, 24, 771-804.	2.2	75

#	Article	IF	CITATIONS
73	Large margin linear discriminative visualization by Matrix Relevance Learning. , 2012, , .		11
74	Functional relevance learning in generalized learning vector quantization. Neurocomputing, 2012, 90, 85-95.	5.9	30
75	Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences. Neurocomputing, 2012, 90, 23-45.	5.9	79
76	Limited Rank Matrix Learning, discriminative dimension reduction and visualization. Neural Networks, 2012, 26, 159-173.	5.9	79
77	Dimensionality reduction mappings. , 2011, , .		7
78	Texture feature selection with relevance learning to classify interstitial lung disease patterns. Proceedings of SPIE, 2011, , .	0.8	1
79	Learning effective color features for content based image retrieval in dermatology. Pattern Recognition, 2011, 44, 1892-1902.	8.1	58
80	Divergence-based classification in learning vector quantization. Neurocomputing, 2011, 74, 1429-1435.	5.9	46
81	Neighbor embedding XOM for dimension reduction and visualization. Neurocomputing, 2011, 74, 1340-1350.	5.9	43
82	Urine Steroid Metabolomics as a Biomarker Tool for Detecting Malignancy in Adrenal Tumors. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3775-3784.	3.6	369
83	A General Framework for Dimensionality Reduction for Large Data Sets. Lecture Notes in Computer Science, 2011, , 277-287.	1.3	3
84	Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing, 2010, 73, 1074-1092.	5.9	38
85	Hyperparameter learning in probabilistic prototype-based models. Neurocomputing, 2010, 73, 1117-1124.	5.9	19
86	Post-correlation radio frequency interference classification methods. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	138
87	Window-Based Example Selection in Learning Vector Quantization. Neural Computation, 2010, 22, 2924-2961.	2.2	17
88	Regularization in Matrix Relevance Learning. IEEE Transactions on Neural Networks, 2010, 21, 831-840.	4.2	59
89	Generalized Derivative Based Kernelized Learning Vector Quantization. Lecture Notes in Computer Science, 2010, , 21-28.	1.3	8
90	The Mathematics of Divergence Based Online Learning in Vector Quantization. Lecture Notes in Computer Science, 2010, , 108-119.	1.3	5

#	Article	IF	CITATIONS
91	Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation, 2009, 21, 3532-3561.	2.2	248
92	Distance Learning in Discriminative Vector Quantization. Neural Computation, 2009, 21, 2942-2969.	2.2	71
93	Phase transitions in vector quantization and neural gas. Neurocomputing, 2009, 72, 1390-1397.	5.9	0
94	Matrix Metric Adaptation Linear Discriminant Analysis of Biomedical Data. Lecture Notes in Computer Science, 2009, , 933-940.	1.3	2
95	Nonlinear Dimension Reduction and Visualization of Labeled Data. Lecture Notes in Computer Science, 2009, , 1162-1170.	1.3	2
96	Metric Learning for Prototype-Based Classification. Studies in Computational Intelligence, 2009, , 183-199.	0.9	13
97	Automatic classification of the acrosome status of boar spermatozoa using digital image processing and LVQ. Computers in Biology and Medicine, 2008, 38, 461-468.	7.0	24
98	Learning dynamics and robustness of vector quantization and neural gas. Neurocomputing, 2008, 71, 1210-1219.	5.9	11
99	Progress in modeling, theory, and application of computational intelligence. Neurocomputing, 2008, 71, 1117-1119.	5.9	0
100	Simulation of self-assembled nanopatterns in strained 2D alloys on the face centered cubic (111) surface. Journal of Physics Condensed Matter, 2008, 20, 265004.	1.8	2
101	Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics. Lecture Notes in Computer Science, 2008, , 78-89.	1.3	3
102	Formation and consequences of misfit dislocations in heteroepitaxial growth. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3210-3220.	0.8	8
103	Advances in computational intelligence and learning. Neurocomputing, 2007, 70, 1117-1119.	5.9	0
104	Analysis of Tiling Microarray Data by Learning Vector Quantization and Relevance Learning. , 2007, , 880-889.		8
105	Performance analysis of LVQ algorithms: A statistical physics approach. Neural Networks, 2006, 19, 817-829.	5.9	23
106	Learning vector quantization: The dynamics of winner-takes-all algorithms. Neurocomputing, 2006, 69, 660-670.	5.9	29
107	Lattice Gas Models and Kinetic Monte Carlo Simulations of Epitaxial Growth. , 2005, , 3-18.		7
108	Interplay of strain relaxation and chemically induced diffusion barriers: Nanostructure formation in 2D alloys. Surface Science, 2005, 586, 157-173.	1.9	14

#	Article	IF	CITATIONS
109	Efficient training of multilayer perceptrons using principal component analysis. Physical Review E, 2005, 72, 026117.	2.1	1
110	Off-lattice Kinetic Monte Carlo Simulations of Strained Heteroepitaxial Growth. , 2005, , 41-56.		7
111	Off-Lattice KMC Simulations of Stranski-Krastanov-Like Growth. , 2005, , 89-102.		1
112	Kinetic model of II-VI(001) semiconductor surfaces: Growth rates in atomic layer epitaxy. Physical Review B, 2004, 69, .	3.2	7
113	Kinetic Monte Carlo simulations of heteroepitaxial growth. Thin Solid Films, 2003, 428, 52-55.	1.8	23
114	Simulation of wetting-layer and island formation in heteroepitaxial growth. Europhysics Letters, 2003, 63, 14-20.	2.0	44
115	The Statistical Physics of Learning: Phase Transitions and Dynamical Symmetry Breaking. , 2003, , 89-99.		0
116	Advanced Fluid Information. Terrace Sizes and Particle Currents in Epitaxial Growth JSME International Journal Series B, 2002, 45, 112-116.	0.3	1
117	Flat (001) surfaces of II–VI semiconductors: a lattice gas model. Surface Science, 2002, 505, 124-136.	1.9	6
118	Modeling (001) surfaces of II–VI semiconductors. Computer Physics Communications, 2002, 147, 107-110.	7.5	2
119	A Kinetic Monte Carlo method for the simulation of heteroepitaxial growth. Computer Physics Communications, 2002, 147, 226-229.	7.5	24
120	Kinetic Monte Carlo simulations of dislocations in heteroepitaxial growth. Europhysics Letters, 2001, 56, 791-796.	2.0	20
121	A lattice gas model of II-VI(001) semiconductor surfaces. Europhysics Letters, 2001, 53, 169-175.	2.0	11
122	Modelling sublimation and atomic layer epitaxy in the presence of competing surface reconstructions. Surface Science, 2001, 488, L553-L560.	1.9	6
123	Training multilayer perceptrons by principal component analysis. Physica A: Statistical Mechanics and Its Applications, 2001, 302, 56-63.	2.6	0
124	Efficiently Learning Multilayer Perceptrons. Physical Review Letters, 2001, 86, 2166-2169.	7.8	2
125	Particle currents and the distribution of terrace sizes in unstable epitaxial growth. Physical Review B, 2001, 64, .	3.2	2
126	Anthropogenic disturbance changes the structure of arboreal tropical ant communities. Ecography, 2001, 24, 547-554.	4.5	50

#	Article	IF	CITATIONS
127	Learning structured data from unspecific reinforcement. Journal of Physics A, 2001, 34, 4267-4267.	1.6	Ο
128	Statistical physics of learning: Phase transitions in multilayered neural networks. , 2000, , 819-826.		3
129	Learning structured data from unspecific reinforcement. Journal of Physics A, 2000, 33, 6843-6857.	1.6	4
130	Singularity spectra of rough growing surfaces from wavelet analysis. Physical Review E, 2000, 62, 1773-1777.	2.1	2
131	The influence of the crystal lattice on coarsening in unstable epitaxial growth. Surface Science, 2000, 465, 339-346.	1.9	7
132	On-line Learning of Prototypes and Principal Components. , 1999, , 231-250.		2
133	Weight-decay induced phase transitions in multilayer neural networks. Journal of Physics A, 1999, 32, 5003-5008.	1.6	1
134	Noisy regression and classification with continuous multilayer networks. Journal of Physics A, 1999, 32, L531-L536.	1.6	2
135	Optimization of on-line principal component analysis. Journal of Physics A, 1999, 32, 4061-4067.	1.6	4
136	Receiver operating characteristics of perceptrons: Influence of sample size and prevalence. Physical Review E, 1999, 60, 5926-5931.	2.1	2
137	Unconventional MBE strategies from computer simulations for optimized growth conditions. Physical Review B, 1999, 60, 2893-2899.	3.2	16
138	A simple model of epitaxial growth: the influence of step edge diffusion. Computer Physics Communications, 1999, 121-122, 347-352.	7.5	2
139	Evaporation and step edge diffusion in MBE. Journal of Crystal Growth, 1999, 201-202, 85-87.	1.5	0
140	Statistical physics and practical training of soft-committee machines. European Physical Journal B, 1999, 10, 583-588.	1.5	10
141	The role of step edge diffusion in epitaxial crystal growth. Surface Science, 1999, 439, 191-198.	1.9	22
142	Phase transitions in soft-committee machines. Europhysics Letters, 1998, 44, 261-267.	2.0	10
143	A simple model of epitaxial growth. Europhysics Letters, 1998, 41, 443-448.	2.0	16
144	The dynamics of on-line principal component analysis. Journal of Physics A, 1998, 31, L97-L103.	1.6	10

#	Article	IF	CITATIONS
145	Learnability of periodic activation functions: General results. Physical Review E, 1998, 58, 3606-3609.	2.1	11
146	Specialization processes in on-line unsupervised learning. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 1487-1494.	0.6	1
147	Dynamics of on-line competitive learning. Europhysics Letters, 1997, 38, 73-78.	2.0	11
148	Noise robustness in multilayer neural networks. Europhysics Letters, 1997, 37, 427-432.	2.0	16
149	Comment on ``On-Line Gibbs Learning''. Physical Review Letters, 1997, 78, 4305-4305.	7.8	2
150	Transient dynamics of on-line learning in two-layered neural networks. Journal of Physics A, 1996, 29, 4769-4780.	1.6	42
151	Supervised Learning from Clustered Input Examples. Europhysics Letters, 1995, 30, 251-251.	2.0	0
152	Learning from noisy data: An exactly solvable model. Physical Review E, 1995, 52, R4624-R4627.	2.1	44
153	Supervised Learning from Clustered Input Examples. Europhysics Letters, 1995, 30, 117-122.	2.0	12
154	Learning by on-line gradient descent. Journal of Physics A, 1995, 28, 643-656.	1.6	119
155	On-line backpropagation in two-layered neural networks. Journal of Physics A, 1995, 28, L507-L513.	1.6	49
156	An Exactly Solvable Model of Unsupervised Learning. Europhysics Letters, 1994, 25, 391-396.	2.0	16
157	On-Line Learning with a Perceptron. Europhysics Letters, 1994, 28, 525-530.	2.0	69
158	Statistical mechanics of unsupervised structure recognition. Journal of Physics A, 1994, 27, 1885-1897.	1.6	37
159	Construction algorithm for the parity-machine. Physica A: Statistical Mechanics and Its Applications, 1993, 193, 307-313.	2.6	1
160	The statistical mechanics of learning a rule. Reviews of Modern Physics, 1993, 65, 499-556.	45.6	376
161	Statistical Mechanics of Unsupervised Learning. Europhysics Letters, 1993, 24, 421-426.	2.0	31
162	Learning drifting concepts with neural networks. Journal of Physics A, 1993, 26, 2651-2665.	1.6	32

#	Article	IF	CITATIONS
163	On-Line Learning of a Time-Dependent Rule. Europhysics Letters, 1992, 20, 733-738.	2.0	30
164	Tilinglike learning in the parity machine. Physical Review A, 1991, 44, 6888-6894.	2.5	20
165	The AdaTron: An Adaptive Perceptron Algorithm. Europhysics Letters, 1989, 10, 687-692.	2.0	174
166	Urine steroid metabolomics as a diagnostic tool in primary aldosteronism. Endocrine Abstracts, 0, , .	0.0	2
167	Steroid metabolomics for accurate and rapid diagnosis of inborn steroidogenic disorders. Endocrine Abstracts, 0, , .	0.0	4
168	Urine steroid metabolomics is a highly sensitive tool for post-operative recurrence detection in adrenocortical carcinoma. Endocrine Abstracts, 0, , .	0.0	1
169	The urinary steroid metabolome as a non-invasive tool to stage non-alcoholic fatty liver disease. Endocrine Abstracts, 0, , .	0.0	1
170	Towards Emotion Classification Using Appraisal Modeling. , 0, , 552-572.		3