
Jae-Keun Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7105192/publications.pdf Version: 2024-02-01

INE-KEUN HONG

#	Article	IF	CITATIONS
1	Development of artificial neural networks software for arsenic adsorption from an aqueous environment. Environmental Research, 2022, 203, 111846.	7.5	12
2	High temperature isothermal oxidation behavior of electron beam melted multi-phase γ-TiAl alloy. Intermetallics, 2022, 141, 107424.	3.9	14
3	Tailoring bimodal structure for high strength and ductility in pure titanium manufactured via laser powder bed fusion. Journal of Alloys and Compounds, 2022, 901, 163590.	5.5	9
4	Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation. Journal of Materials Science and Technology, 2021, 66, 193-201.	10.7	32
5	Realizing superior ductility of selective laser melted Ti-6Al-4V through a multi-step heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140367.	5.6	39
6	Alloy design of metastable α+β titanium alloy with high elastic admissible strain. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140621.	5.6	13
7	Formation of equiaxed grains in selective laser melted pure titanium during annealing. Journal of Materials Research and Technology, 2021, 11, 301-311.	5.8	20
8	Demonstration of martensite reorientation-induced plasticity by ultra-high strength titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 807, 140878.	5.6	13
9	Optimization of process parameters for direct energy deposited Ti-6Al-4V alloy using neural networks. International Journal of Advanced Manufacturing Technology, 2021, 114, 3269-3283.	3.0	8
10	Effect of Electric Current Heat Treatment on Commercially Pure Titanium Sheets. Metals, 2021, 11, 783.	2.3	4
11	Influence of Direct Energy Deposition Parameters on Ti–6Al–4V Component's Structure-Property Homogeneity. Metals, 2021, 11, 887.	2.3	1
12	Novel eutectoid Ti-5Ni alloy fabricated via direct energy deposition. Scripta Materialia, 2021, 200, 113918.	5.2	16
13	Enhancing low-cycle fatigue life of commercially-pure Ti by deformation at cryogenic temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140698.	5.6	12
14	Effect of prior \hat{I}^2 grain size on the martensitic transformation of titanium alloys. Materials Characterization, 2021, 182, 111525.	4.4	6
15	Development of sub-grained $\hat{l}\pm+\hat{l}^2$ Ti alloy with high yield strength showing twinning- and transformation-induced plasticity. Journal of Alloys and Compounds, 2020, 813, 152102.	5.5	21
16	High strength and ductility of pure titanium via twin-structure control using cryogenic deformation. Scripta Materialia, 2020, 178, 94-98.	5.2	50
17	High strength and ductility in low-cost Ti–Al–Fe–Mn alloy exhibiting transformation-induced plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138813.	5.6	23
18	Microstructure and strength–ductility balance of pure titanium processed by cryogenic rolling at various rolling reductions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140328.	5.6	23

JAE-KEUN HONG

#	Article	IF	CITATIONS
19	Modeling high-temperature mechanical properties of austenitic stainless steels by neural networks. Computational Materials Science, 2020, 179, 109617.	3.0	21
20	Simultaneous achievement of equiaxed grain structure and weak texture in pure titanium via selective laser melting and subsequent heat treatment. Journal of Alloys and Compounds, 2019, 803, 407-412.	5.5	33
21	Microstructural response of β-stabilized Ti–6Al–4V manufactured by direct energy deposition. Journal of Alloys and Compounds, 2019, 811, 152021.	5.5	47
22	A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber Composites for Vibration Energy Harvesting. Sensors, 2019, 19, 2196.	3.8	35
23	Simultaneous Improvement in the Strength and Formability of Commercially Pure Titanium via Twinning-induced Crystallographic Texture Control. Scientific Reports, 2019, 9, 2009.	3.3	23
24	Deformation mechanism of metastable titanium alloy showing stress-induced α′-Martensitic transformation. Journal of Alloys and Compounds, 2019, 782, 427-432.	5.5	37
25	Effects of Cr and Fe Addition on Microstructure and Tensile Properties of Ti–6Al–4V Prepared by Direct Energy Deposition. Metals and Materials International, 2018, 24, 1213-1220.	3.4	18
26	The Role of Nano-domains in {1–011} Twinned Martensite in Metastable Titanium Alloys. Scientific Reports, 2018, 8, 11914.	3.3	23
27	Cyclic Oxidation Behaviors of TiAl–Nb–Si-Based Alloys. Oxidation of Metals, 2016, 86, 417-430.	2.1	7
28	Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. Journal of Materials Processing Technology, 2008, 201, 515-520.	6.3	110