Rita Horvath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7104889/publications.pdf

Version: 2024-02-01

299 papers 15,735 citations

64 h-index 109 g-index

310 all docs

 $\begin{array}{c} 310 \\ \text{docs citations} \end{array}$

310 times ranked

16690 citing authors

#	Article	IF	CITATIONS
1	Prevalence of nuclear and mitochondrial <scp>DNA</scp> mutations related to adult mitochondrial disease. Annals of Neurology, 2015, 77, 753-759.	5.3	706
2	Phenotypic spectrum associated with mutations of the mitochondrial polymerase \hat{A} gene. Brain, 2006, 129, 1674-1684.	7.6	397
3	Multi-system neurological disease is common in patients with OPA1 mutations. Brain, 2010, 133, 771-786.	7.6	385
4	100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care — Preliminary Report. New England Journal of Medicine, 2021, 385, 1868-1880.	27.0	352
5	Universal heteroplasmy of human mitochondrial DNA. Human Molecular Genetics, 2013, 22, 384-390.	2.9	344
6	Whole-genome sequencing of patients with rare diseases in a national health system. Nature, 2020, 583, 96-102.	27.8	338
7	Clinical Expression of Leber Hereditary Optic Neuropathy Is Affected by the Mitochondrial DNA–Haplogroup Background. American Journal of Human Genetics, 2007, 81, 228-233.	6.2	331
8	Use of Whole-Exome Sequencing to Determine the Genetic Basis of Multiple Mitochondrial Respiratory Chain Complex Deficiencies. JAMA - Journal of the American Medical Association, 2014, 312, 68.	7.4	304
9	The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain, 2007, 130, 2037-2044.	7.6	298
10	Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nature Genetics, 2009, 41, 833-837.	21.4	260
11	SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nature Genetics, 2009, 41, 654-656.	21.4	233
12	Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Human Molecular Genetics, 2003, 12, 2693-2702.	2.9	219
13	Polymerase \hat{I}^3 Gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology, 2010, 52, 1791-1796.	7.3	219
14	Late onset Pompe disease: Clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromuscular Disorders, 2007, 17, 698-706.	0.6	208
15	Risk of developing a mitochondrial DNA deletion disorder. Lancet, The, 2004, 364, 592-596.	13.7	201
16	Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations. Nature Genetics, 2011, 43, 806-810.	21.4	201
17	Extending the <i>KCNQ2</i> encephalopathy spectrum. Neurology, 2013, 81, 1697-1703.	1.1	198
18	The Human Cytochrome c Oxidase Assembly Factors SCO1 and SCO2 Have Regulatory Roles in the Maintenance of Cellular Copper Homeostasis. Cell Metabolism, 2007, 5, 9-20.	16.2	197

#	Article	IF	CITATIONS
19	Identification of an X-Chromosomal Locus and Haplotype Modulating the Phenotype of a Mitochondrial DNA Disorder. American Journal of Human Genetics, 2005, 77, 1086-1091.	6.2	181
20	Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genetics in Medicine, 2017, 19, 1380-1397.	2.4	173
21	The Prevalence and Natural History of Dominant Optic Atrophy Due to OPA1 Mutations. Ophthalmology, 2010, 117, 1538-1546.e1.	5.2	162
22	Mitochondria: Impaired mitochondrial translation in human disease. International Journal of Biochemistry and Cell Biology, 2014, 48, 77-84.	2.8	158
23	New treatments for mitochondrial disease—no time to drop our standards. Nature Reviews Neurology, 2013, 9, 474-481.	10.1	157
24	Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain, 2014, 137, 1323-1336.	7.6	151
25	Escobar Syndrome Is a Prenatal Myasthenia Caused by Disruption of the Acetylcholine Receptor Fetal \hat{I}^3 Subunit. American Journal of Human Genetics, 2006, 79, 303-312.	6.2	146
26	Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain, 2014, 137, 44-56.	7.6	143
27	Mitochondrial Phosphate–Carrier Deficiency: A Novel Disorder of Oxidative Phosphorylation. American Journal of Human Genetics, 2007, 80, 478-484.	6.2	142
28	The Cloning and Expression of a Human Creatine Transporter. Biochemical and Biophysical Research Communications, 1994, 204, 419-427.	2.1	136
29	Store-Operated Ca 2+ Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism. Cell Metabolism, 2017, 25, 698-712.	16.2	131
30	EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nature Communications, 2014, 5, 4287.	12.8	120
31	Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain, 2015, 138, 276-283.	7.6	120
32	Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency. American Journal of Human Genetics, 2016, 98, 1130-1145.	6.2	118
33	Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 74-76.	1.9	115
34	Titin mutation segregates with hereditary myopathy with early respiratory failure. Brain, 2012, 135, 1695-1713.	7.6	113
35	Cytochrome c oxidase deficiency due to mutations in SCO2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts. Human Molecular Genetics, 2001, 10, 3025-3035.	2.9	112
36	Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain, 2009, 132, 3165-3174.	7.6	112

#	Article	IF	CITATIONS
37	LPIN1 gene mutations: a major cause of severe rhabdomyolysis in early childhood. Human Mutation, 2010, 31, E1564-E1573.	2.5	112
38	Coenzyme Q10 deficiency and isolated myopathy. Neurology, 2006, 66, 253-255.	1.1	109
39	Safety and efficacy of deferiprone for pantothenate kinase-associated neurodegeneration: a randomised, double-blind, controlled trial and an open-label extension study. Lancet Neurology, The, 2019, 18, 631-642.	10.2	102
40	Hepatocerebral Mitochondrial DNA Depletion Syndrome Caused by Deoxyguanosine Kinase (DGUOK) Mutations. Archives of Neurology, 2006, 63, 1129.	4.5	101
41	Adult-onset cerebellar ataxia due to mutations in <i>CABC1/ADCK3</i> . Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 174-178.	1.9	99
42	Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. American Journal of Human Genetics, 2016, 99, 735-743.	6.2	99
43	Neuropathology of white matter disease in Leber's hereditary optic neuropathy. Brain, 2004, 128, 35-41.	7.6	96
44	Functional defects due to spacer-region mutations of human mitochondrial DNA polymerase in a family with an ataxia-myopathy syndrome. Human Molecular Genetics, 2005, 14, 1907-1920.	2.9	96
45	Synaptotagmin 2 Mutations Cause an Autosomal-Dominant Form of Lambert-Eaton Myasthenic Syndrome and Nonprogressive Motor Neuropathy. American Journal of Human Genetics, 2014, 95, 332-339.	6.2	96
46	OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Human Molecular Genetics, 2010, 19, 3043-3052.	2.9	95
47	The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene. Journal of Neurology, 2011, 258, 1987-1997.	3.6	87
48	<i>SPG7</i> mutations are a common cause of undiagnosed ataxia. Neurology, 2015, 84, 1174-1176.	1.1	87
49	Homozygous deletion in <i>MICU1</i> presenting with fatigue and lethargy in childhood. Neurology: Genetics, 2016, 2, e59.	1.9	86
50	Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain, 2017, 140, 1561-1578.	7.6	85
51	The clinical, histochemical, and molecular spectrum of <i>PEO1</i> (Twinkle)-linked adPEO. Neurology, 2010, 74, 1619-1626.	1.1	84
52	Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. Journal of Neurology, 2012, 259, 1673-1685.	3.6	82
53	Homozygosity (E140K) in <i>SCO2</i> causes delayed infantile onset of cardiomyopathy and neuropathy. Neurology, 2001, 57, 1440-1446.	1.1	81
54	Genetic heterogeneity of motor neuropathies. Neurology, 2017, 88, 1226-1234.	1.1	81

#	Article	IF	Citations
55	Mutation screening of 75 candidate genes in 152 complex I deficiency cases identifies pathogenic variants in 16 genes including <i> NDUFB9 Journal of Medical Genetics, 2012, 49, 83-89.</i>	3.2	78
56	Truncating and Missense Mutations in IGHMBP2 Cause Charcot-Marie Tooth Disease Type 2. American Journal of Human Genetics, 2014, 95, 590-601.	6.2	75
57	ANO10 mutations cause ataxia and coenzyme Q10 deficiency. Journal of Neurology, 2014, 261, 2192-2198.	3.6	74
58	Mitochondrial Diseases: A Diagnostic Revolution. Trends in Genetics, 2020, 36, 702-717.	6.7	73
59	Mitochondrial DNA transcription and translation: clinical syndromes. Essays in Biochemistry, 2018, 62, 321-340.	4.7	72
60	MFN2 mutations in Charcot–Marie–Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics. Human Molecular Genetics, 2019, 28, 1782-1800.	2.9	72
61	Titin founder mutation is a common cause of myofibrillar myopathy with early respiratory failure. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 331-338.	1.9	71
62	Adults with RRM2B-related mitochondrial disease have distinct clinical and molecular characteristics. Brain, 2012, 135, 3392-3403.	7.6	70
63	Parkinson syndrome, neuropathy, and myopathy caused by the mutation A8344G (MERRF) in tRNALys. Neurology, 2007, 68, 56-58.	1.1	69
64	Mutations in the Mitochondrial Citrate Carrier SLC25A1 are Associated with Impaired Neuromuscular Transmission. Journal of Neuromuscular Diseases, 2014, 1, 75-90.	2.6	69
65	The role of <scp>tRNA</scp> synthetases in neurological and neuromuscular disorders. FEBS Letters, 2018, 592, 703-717.	2.8	68
66	Dysregulation of Mitochondrial Ca2+ Uptake and Sarcolemma Repair Underlie Muscle Weakness and Wasting in Patients and Mice Lacking MICU1. Cell Reports, 2019, 29, 1274-1286.e6.	6.4	68
67	Abnormal neurological features predict poor survival and should preclude liver transplantation in patients with deoxyguanosine kinase deficiency. Liver Transplantation, 2008, 14, 1480-1485.	2.4	67
68	Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain, 2011, 134, 183-195.	7.6	66
69	Update on clinical aspects and treatment of selected vitaminâ€responsive disorders II (riboflavin and) Tj ETQq1	1 0,784314	rgBT /Overl
70	Consensus-based statements for the management of mitochondrial stroke-like episodes. Wellcome Open Research, 2019, 4, 201.	1.8	66
71	Deficiency of the mitochondrial phosphate carrier presenting as myopathy and cardiomyopathy in a family with three affected children. Neuromuscular Disorders, 2011, 21, 803-808.	0.6	65
72	Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. American Journal of Human Genetics, 2018, 102, 858-873.	6.2	65

#	Article	IF	CITATIONS
73	Acute liver failure with subsequent cirrhosis as the primary manifestation of <i>TRMU</i> mutations. Journal of Inherited Metabolic Disease, 2011, 34, 197-201.	3.6	64
74	Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations. Genetics in Medicine, 2014 , 16 , $962-971$.	2.4	64
75	Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain, 2017, 140, 2820-2837.	7.6	64
76	The integrated stress response contributes to tRNA synthetase–associated peripheral neuropathy. Science, 2021, 373, 1156-1161.	12.6	64
77	Epilepsy in adults with mitochondrial disease: A cohort study. Annals of Neurology, 2015, 78, 949-957.	5. 3	62
78	Revisiting mitochondrial diagnostic criteria in the new era of genomics. Genetics in Medicine, 2018, 20, 444-451.	2.4	62
79	Adult-onset glycogen storage disease type 2: clinico-pathological phenotype revisited. Neuropathology and Applied Neurobiology, 2007, 33, 070615152525006-???.	3.2	61
80	<i>RRM2B</i> mutations are frequent in familial PEO with multiple mtDNA deletions. Neurology, 2011, 76, 2032-2034.	1,1	59
81	Emerging therapies for mitochondrial disorders. Brain, 2016, 139, 1633-1648.	7.6	59
82	International Workshop:. Neuromuscular Disorders, 2017, 27, 1126-1137.	0.6	58
83	Reversion of hypertrophic cardiomyopathy in a patient with deficiency of the mitochondrial copper binding protein Sco2: Is there a potential effect of copper?. Journal of Inherited Metabolic Disease, 2004, 27, 67-79.	3.6	57
84	The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Human Molecular Genetics, 2011, 20, 4634-4643.	2.9	56
85	Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck. Human Molecular Genetics, 2016, 25, 1031-1041.	2.9	53
86	Altered 2-thiouridylation impairs mitochondrial translation in reversible infantile respiratory chain deficiency. Human Molecular Genetics, 2013, 22, 4602-4615.	2.9	52
87	De Novo Mutations in EBF3 Cause a Neurodevelopmental Syndrome. American Journal of Human Genetics, 2017, 100, 138-150.	6.2	52
88	A novel mechanism causing imbalance of mitochondrial fusion and fission in human myopathies. Human Molecular Genetics, 2018, 27, 1186-1195.	2.9	52
89	Clinicoâ€Genetic, Imaging and Molecular Delineation of <scp><i>COQ8A</i></scp> â€Ataxia: A Multicenter Study of 59 Patients. Annals of Neurology, 2020, 88, 251-263.	5.3	52
90	First-line genomic diagnosis of mitochondrial disorders. Nature Reviews Genetics, 2018, 19, 399-400.	16.3	49

#	Article	IF	CITATIONS
91	Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases. European Journal of Human Genetics, 2021, 29, 1325-1331.	2.8	49
92	Electrophysiologic features of <i>SYT2</i> mutations causing a treatable neuromuscular syndrome. Neurology, 2015, 85, 1964-1971.	1.1	47
93	What is influencing the phenotype of the common homozygous polymerase-Î ³ mutation p.Ala467Thr?. Brain, 2012, 135, 3614-3626.	7.6	46
94	Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation. Frontiers in Genetics, 2015, 6, 21.	2.3	46
95	Metabolic effects of bezafibrate in mitochondrial disease. EMBO Molecular Medicine, 2020, 12, e11589.	6.9	45
96	Mutations in mtDNA-encoded cytochrome c oxidase subunit genes causing isolated myopathy or severe encephalomyopathy. Neuromuscular Disorders, 2005, 15, 851-857.	0.6	44
97	In vitro supplementation with dAMP/dGMP leads to partial restoration of mtDNA levels in mitochondrial depletion syndromes. Human Molecular Genetics, 2009, 18, 1590-1599.	2.9	44
98	Charcot–Marie–Tooth disease in Northern England: Figure 1. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 572-573.	1.9	44
99	Monitoring clinical progression with mitochondrial disease biomarkers. Brain, 2017, 140, 2530-2540.	7.6	44
100	Cross-sectional analysis of a large cohort with X-linked Charcot-Marie-Tooth disease (CMTX1). Neurology, 2017, 89, 927-935.	1.1	44
101	Clinical presentation and proteomic signature of patients with <i>TANGO2</i> mutations. Journal of Inherited Metabolic Disease, 2020, 43, 297-308.	3.6	43
102	Adult-onset spinocerebellar ataxia syndromes due to <i>MTATP6</i> mutations. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 883-886.	1.9	42
103	Diagnosis of â€~possible' mitochondrial disease: an existential crisis. Journal of Medical Genetics, 2019, 56, 123-130.	3.2	42
104	Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study. BMJ, The, 2021, 375, e066288.	6.0	42
105	Collated mutations in mitochondrial DNA (mtDNA) depletion syndrome (excluding the mitochondrial) Tj $ETQq1\ 1$ 1109-1112.	0.784314 3.8	rgBT /Over 41
106	MFN2 mutations cause compensatory mitochondrial DNA proliferation. Brain, 2012, 135, e219-e219.	7.6	41
107	A new phenotype of brain iron accumulation with dystonia, optic atrophy, and peripheral neuropathy. Movement Disorders, 2012, 27, 789-793.	3.9	41
108	Clonal Expansion of Secondary Mitochondrial DNA Deletions Associated With Spinocerebellar Ataxia Type 28. JAMA Neurology, 2015, 72, 106.	9.0	41

#	Article	IF	Citations
109	Valproic acid triggers increased mitochondrial biogenesis in POLG-deficient fibroblasts. Molecular Genetics and Metabolism, 2014, 112, 57-63.	1.1	40
110	Late-onset ptosis and myopathy in a patient with a heterozygous insertion in POLG2. Journal of Neurology, 2010, 257, 1517-1523.	3.6	39
111	<i>SCP2</i> mutations and neurodegeneration with brain iron accumulation. Neurology, 2015, 85, 1909-1911.	1.1	39
112	Natural history of Charcot-Marie-Tooth disease type 2A: a large international multicentre study. Brain, 2020, 143, 3589-3602.	7.6	39
113	Gentamicin treatment in McArdle disease: Failure to correct myophosphorylase deficiency. Neurology, 2006, 66, 285-286.	1.1	38
114	Mitochondrial myopathies: developments in treatment. Current Opinion in Neurology, 2010, 23, 459-465.	3.6	38
115	Multisystem fatal infantile disease caused by a novel homozygous EARS2 mutation. Brain, 2013, 136, e228-e228.	7.6	38
116	Identification of rare DNA variants in mitochondrial disorders with improved array-based sequencing. Nucleic Acids Research, 2011, 39, 44-58.	14.5	37
117	Mitochondrial pathology in progressive cerebellar ataxia. Cerebellum and Ataxias, 2015, 2, 16.	1.9	37
118	Reversible infantile mitochondrial diseases. Journal of Inherited Metabolic Disease, 2015, 38, 427-435.	3.6	37
119	Characterization of Human SCO1 and COX17 Genes in Mitochondrial Cytochrome-c-Oxidase Deficiency. Biochemical and Biophysical Research Communications, 2000, 276, 530-533.	2.1	36
120	Advances in the diagnosis of inherited neuromuscular diseases and implications for therapy development. Lancet Neurology, The, 2020, 19, 522-532.	10.2	36
121	Leber's hereditary optic neuropathy presenting as multiple sclerosis-like disease of the CNS. Journal of Neurology, 2000, 247, 65-67.	3.6	35
122	Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscular Disorders, 2006, 16, 541-547.	0.6	35
123	Heteroplasmic mutation in the anticodon-stem of mitochondrial tRNAVal causing MNGIE-like gastrointestinal dysmotility and cachexia. Journal of Neurology, 2009, 256, 810-815.	3.6	35
124	Infantile Encephaloneuromyopathy and Defective Mitochondrial Translation Are Due to a Homozygous RMND1 Mutation. American Journal of Human Genetics, 2012, 91, 729-736.	6.2	35
125	Altered RNA metabolism due to a homozygousRBM7mutation in a patient with spinal motor neuropathy. Human Molecular Genetics, 2016, 25, ddw149.	2.9	35
126	Childhood onset mitochondrial myopathy and lactic acidosis caused by a stop mutation in the mitochondrial cytochrome c oxidase III gene. Journal of Medical Genetics, 2002, 39, 812-816.	3.2	34

#	Article	IF	Citations
127	A novel mitochondrial MTND5 frameshift mutation causing isolated complex I deficiency, renal failure and myopathy. Neuromuscular Disorders, 2010, 20, 131-135.	0.6	34
128	A novel de novo STXBP1 mutation is associated with mitochondrial complex I deficiency and late-onset juvenile-onset parkinsonism. Neurogenetics, 2015, 16, 65-67.	1.4	34
129	Solving patients with rare diseases through programmatic reanalysis of genome-phenome data. European Journal of Human Genetics, 2021, 29, 1337-1347.	2.8	34
130	How Can We Treat Mitochondrial Encephalomyopathies? Approaches to Therapy. Neurotherapeutics, 2008, 5, 558-568.	4.4	33
131	POLG mutations cause decreased mitochondrial DNA repopulation rates following induced depletion in human fibroblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 321-325.	3.8	33
132	Mitochondrial DNA deletions in muscle satellite cells: implications for therapies. Human Molecular Genetics, 2013, 22, 4739-4747.	2.9	33
133	Mitochondrial dysfunction in liver failure requiring transplantation. Journal of Inherited Metabolic Disease, 2016, 39, 427-436.	3.6	33
134	Intersection of Proteomics and Genomics to "Solve the Unsolved―in Rare Disorders such as Neurodegenerative and Neuromuscular Diseases. Proteomics - Clinical Applications, 2018, 12, 1700073.	1.6	33
135	Pathogenic variants in <i>MTâ€ATP6</i> : A United Kingdom–based mitochondrial disease cohort study. Annals of Neurology, 2019, 86, 310-315.	5.3	33
136	De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects. American Journal of Human Genetics, 2020, 107, 311-324.	6.2	32
137	AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy. Gene Therapy, 2021, 28, 659-675.	4.5	32
138	Clinical and neuropathological findings in patients with TACO1 mutations. Neuromuscular Disorders, 2010, 20, 720-724.	0.6	31
139	In vitro supplementation with deoxynucleoside monophosphates rescues mitochondrial DNA depletion. Molecular Genetics and Metabolism, 2012, 107, 95-103.	1.1	31
140	Genotype/phenotype correlations in AARS-related neuropathy in a cohort of patients from the United Kingdom and Ireland. Journal of Neurology, 2015, 262, 1899-1908.	3.6	31
141	Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy–like disease. Genetics in Medicine, 2018, 20, 1224-1235.	2.4	31
142	Mutations in <i>ELAC2</i> i>associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3′â€end processing. Human Mutation, 2019, 40, 1731-1748.	2.5	31
143	Fatal Neonatal-Onset Mitochondrial Respiratory Chain Disease with T Cell Immunodeficiency. Pediatric Research, 2006, 60, 321-326.	2.3	30
144	<i>OPA1</i> IN MULTIPLE MITOCHONDRIAL DNA DELETION DISORDERS. Neurology, 2008, 71, 1829-1831.	1.1	30

#	Article	IF	Citations
145	<i>AMACR</i> mutations cause late-onset autosomal recessive cerebellar ataxia. Neurology, 2011, 76, 1768-1770.	1.1	30
146	Two recurrent mutations are associated with GNE myopathy in the North of Britain. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1359-1365.	1.9	30
147	alpha-Tocopherol/lipid ratio in blood is decreased in patients with Leber's hereditary optic neuropathy and asymptomatic carriers of the 11778 mtDNA mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 70, 359-362.	1.9	29
148	SACS variants are a relevant cause of autosomal recessive hereditary motor and sensory neuropathy. Human Genetics, 2018, 137, 911-919.	3.8	29
149	Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome. Human Molecular Genetics, 2019, 28, 2339-2351.	2.9	29
150	Long-term survival of neonatal mitochondrial complex III deficiency associated with a novel BCS1L gene mutation. Molecular Genetics and Metabolism, 2010, 100, 345-348.	1.1	27
151	Phenotypic variability of TRPV4 related neuropathies. Neuromuscular Disorders, 2015, 25, 516-521.	0.6	27
152	Demyelinating disease of central and peripheral nervous systems associated with a A8344G mutation in tRNALys. Neuromuscular Disorders, 2009, 19, 275-278.	0.6	26
153	Prevalence of neurogenetic disorders in the North of England. Neurology, 2015, 85, 1195-1201.	1.1	26
154	Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Human Molecular Genetics, 2018, 27, 2187-2204.	2.9	26
155	Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. EMBO Journal, 2020, 39, e105364.	7.8	26
156	Clinical and functional characterisation of the combined respiratory chain defect in two sisters due to autosomal recessive mutations in MTFMT. Mitochondrion, 2013, 13, 743-748.	3.4	25
157	Abnormal retinal thickening is a common feature among patients with ARSACS-related phenotypes: TableÂ1. British Journal of Ophthalmology, 2014, 98, 711-713.	3.9	25
158	Two families with autosomal dominant progressive external ophthalmoplegia. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 1125-1128.	1.9	24
159	Novel <i>HSPB1</i> mutation causes both motor neuronopathy and distal myopathy. Neurology: Genetics, 2016, 2, e110.	1.9	24
160	Pathogenic mtDNA mutations causing mitochondrial myopathy: The need for muscle biopsy. Neurology: Genetics, 2016, 2, e82.	1.9	24
161	The genotypic and phenotypic spectrum of MTO1 deficiency. Molecular Genetics and Metabolism, 2018, 123, 28-42.	1.1	24
162	Neuromuscular Junction Changes in a Mouse Model of Charcot-Marie-Tooth Disease Type 4C. International Journal of Molecular Sciences, 2018, 19, 4072.	4.1	24

#	Article	IF	Citations
163	Predicting the contribution of novel POLG mutations to human disease through analysis in yeast model. Mitochondrion, 2011, 11, 182-190.	3.4	23
164	Late-onset respiratory failure due to $\langle i \rangle TK2 \langle i \rangle$ mutations causing multiple mtDNA deletions. Neurology, 2013, 81, 2051-2053.	1.1	23
165	Respiratory chain deficiency in nonmitochondrial disease. Neurology: Genetics, 2015, 1, e6.	1.9	23
166	Congenital cataract, muscular hypotonia, developmental delay and sensorineural hearing loss associated with a defect in copper metabolism. Journal of Inherited Metabolic Disease, 2005, 28, 479-492.	3.6	22
167	Novel genetic and neuropathological insights in neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP). Muscle and Nerve, 2016, 54, 328-333.	2.2	22
168	Novel homozygous RARS2 mutation in two siblings without pontocerebellar hypoplasia $\hat{a} \in \text{``further}$ expansion of the phenotypic spectrum. Orphanet Journal of Rare Diseases, 2016, 11, 140.	2.7	22
169	Prominent Sensorimotor Neuropathy Due to SACS Mutations Revealed by Whole-Exome Sequencing. Archives of Neurology, 2012, 69, 1351-4.	4.5	21
170	Progressive Brain Iron Accumulation in Neuroferritinopathy Measured by the Thalamic T2* Relaxation Rate. American Journal of Neuroradiology, 2012, 33, 1810-1813.	2.4	21
171	Clonal expansion of mtDNA deletions: different disease models assessed by digital droplet PCR in single muscle cells. Scientific Reports, 2018, 8, 11682.	3.3	21
172	A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: building a Treatabolome. Orphanet Journal of Rare Diseases, 2020, 15, 206.	2.7	21
173	The role of complex I genes in MELAS: A novel heteroplasmic mutation 3380G>A in ND1 of mtDNA. Neuromuscular Disorders, 2008, 18, 553-556.	0.6	20
174	Behr's Syndrome is Typically Associated with Disturbed Mitochondrial Translation and Mutations in the C12orf65 Gene. Journal of Neuromuscular Diseases, 2014, 1, 55-63.	2.6	20
175	Frequency of rare recessive mutations in unexplained late onset cerebellar ataxia. Journal of Neurology, 2015, 262, 1822-1827.	3.6	20
176	Biomarkers predict outcome in Charcot-Marie-Tooth disease 1A. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 941-952.	1.9	20
177	HADHA and HADHB gene associated phenotypes - Identification of rare variants in a patient cohort by Next Generation Sequencing. Molecular and Cellular Probes, 2019, 44, 14-20.	2.1	20
178	Congenital myasthenic syndrome with mild intellectual disability caused by a recurrent SLC25A1 variant. European Journal of Human Genetics, 2020, 28, 373-377.	2.8	20
179	Biallelic loss of function variants in <scp><i>SYT2</i></scp> cause a treatable congenital onset presynaptic myasthenic syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 2272-2283.	1.2	20
180	Frequency of mitochondrial transfer RNA mutations and deletions in 225 patients presenting with respiratory chain deficiencies. Journal of Medical Genetics, 2001, 38, 665-673.	3.2	19

#	Article	IF	Citations
181	Recurrent stroke-like episodes in X-linked Charcot-Marie-Tooth disease. Neurology, 2011, 77, 1205-1206.	1.1	19
182	Founder p.Arg 446* mutation in the PDHX gene explains over half of cases with congenital lactic acidosis in Roma children. Molecular Genetics and Metabolism, 2014, 113, 76-83.	1.1	19
183	A Mutation in the Flavin Adenine Dinucleotide-Dependent Oxidoreductase FOXRED1 Results in Cell-Type-Specific Assembly Defects in Oxidative Phosphorylation Complexes I and II. Molecular and Cellular Biology, 2016, 36, 2132-2140.	2.3	19
184	Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family. Brain, 2018, 141, 55-62.	7.6	19
185	The genetic landscape of axonal neuropathies in the middle-aged and elderly. Neurology, 2020, 95, e3163-e3179.	1.1	19
186	A variable neurodegenerative phenotype with polymerase mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 1181-1182.	1.9	18
187	Brain iron takes off: a new propeller protein links neurodegeneration with autophagy. Brain, 2013, 136, 1687-1691.	7.6	18
188	Phenotypic convergence of Menkes and Wilson disease. Neurology: Genetics, 2016, 2, e119.	1.9	18
189	The RD onnect Genomeâ€Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases. Human Mutation, 2022, , .	2.5	18
190	A translatable RNAi-driven gene therapy silences PMP22/Pmp22 genes and improves neuropathy in CMT1A mice. Journal of Clinical Investigation, 2022, 132 , .	8.2	18
191	Cysteine Supplementation May be Beneficial in a Subgroup of Mitochondrial Translation Deficiencies. Journal of Neuromuscular Diseases, 2016, 3, 363-379.	2.6	17
192	RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels. Life Science Alliance, 2020, 3, e202000678.	2.8	17
193	PFN2 and GAMT as common molecular determinants of axonal Charcot-Marie-Tooth disease. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 870-878.	1.9	16
194	Clinical and Genetic Features in a Series of Eight Unrelated Patients with Neuropathy Due to Glycyl-tRNA Synthetase (GARS) Variants. Journal of Neuromuscular Diseases, 2020, 7, 137-143.	2.6	16
195	CMT2N-causing aminoacylation domain mutants enable Nrp1 interaction with AlaRS. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	16
196	Mitochondrial DNA depletion and fatal infantile hepatic failure due to mutations in the mitochondrial polymerase \hat{I}^3 (POLG) gene: a combined morphological/enzyme histochemical and immunocytochemical/biochemical and molecular genetic study. Journal of Cellular and Molecular Medicine, 2011, 15, 445-456.	3 . 6	15
197	NDUFS8-related Complex I Deficiency Extends Phenotype from "PEO Plus―to Leigh Syndrome. JIMD Reports, 2012, 10, 17-22.	1.5	15
198	Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through cochlear dysfunction. Brain, 2016, 139, e33-e33.	7.6	15

#	Article	IF	Citations
199	Molecular pathophysiology of human MICU1 deficiency. Neuropathology and Applied Neurobiology, 2021, 47, 840-855.	3.2	15
200	Near-Identical Segregation of mtDNA Heteroplasmy in Blood, Muscle, Urinary Epithelium, and Hair Follicles in Twins With Optic Atrophy, Ptosis, and Intractable Epilepsy. JAMA Neurology, 2013, 70, 1552-5.	9.0	14
201	Investigating the role of the physiological isoform switch of cytochrome c oxidase subunits in reversible mitochondrial disease. International Journal of Biochemistry and Cell Biology, 2015, 63, 32-40.	2.8	14
202	Whole exome sequencing and the clinician: we need clinical skills and functional validation in variant filtering. Journal of Neurology, 2015, 262, 1673-1677.	3.6	14
203	Clinical heterogeneity of primary familial brain calcification due to a novel mutation in <i>PDGFB</i> Neurology, 2015, 84, 1818-1820.	1.1	14
204	Early-onset leukoencephalopathy due to a homozygous missense mutation in the DARS2 gene. Molecular and Cellular Probes, 2015, 29, 319-322.	2.1	14
205	Identification of Candidate Protein Markers in Skeletal Muscle of Laminin-211-Deficient CMD Type 1A-Patients. Frontiers in Neurology, 2019, 10, 470.	2.4	14
206	Nucleoside supplementation modulates mitochondrial DNA copy number in the <i>dguok â~'/â~' </i> zebrafish. Human Molecular Genetics, 2019, 28, 796-803.	2.9	14
207	Improved Diagnosis of Rare Disease Patients through Systematic Detection of Runs of Homozygosity. Journal of Molecular Diagnostics, 2020, 22, 1205-1215.	2.8	14
208	Multiple acyl-coenzyme A dehydrogenase deficiency shows a possible founder effect and is the most frequent cause of lipid storage myopathy in Iran. Journal of the Neurological Sciences, 2020, 411, 116707.	0.6	14
209	MitoPhen database: a human phenotype ontology-based approach to identify mitochondrial DNA diseases. Nucleic Acids Research, 2021, 49, 9686-9695.	14.5	14
210	High diagnostic rate of trio exome sequencing in consanguineous families with neurogenetic diseases. Brain, 2022, 145, 1507-1518.	7.6	14
211	Sequence analysis of Hungarian LHON patients not carrying the common primary mutations. Journal of Inherited Metabolic Disease, 2002, 25, 323-324.	3.6	13
212	Exosomal Protein Deficiencies: How Abnormal RNA Metabolism Results in Childhood-Onset Neurological Diseases. Journal of Neuromuscular Diseases, 2015, 2, S31-S37.	2.6	13
213	The p.Ser107Leu in <i>BICD2</i> is a mutation †hot spot†causing distal spinal muscular atrophy. Brain, 2015, 138, e391-e391.	7.6	13
214	Intracellular Lipid Accumulation and Mitochondrial Dysfunction Accompanies Endoplasmic Reticulum Stress Caused by Loss of the Co-chaperone DNAJC3. Frontiers in Cell and Developmental Biology, 2021, 9, 710247.	3.7	13
215	The neurological and ophthalmological manifestations of SPG4-related hereditary spastic paraplegia. Journal of Neurology, 2013, 260, 906-909.	3.6	12
216	Drosophila studies support a role for a presynaptic synaptotagmin mutation in a human congenital myasthenic syndrome. PLoS ONE, 2017, 12, e0184817.	2.5	12

#	Article	IF	CITATIONS
217	Elucidating the molecular mechanisms associated with <i>TARS2</i> -related mitochondrial disease. Human Molecular Genetics, 2022, 31, 523-534.	2.9	12
218	NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain, 2022, 145, 3999-4015.	7.6	12
219	A tRNAAla mutation causing mitochondrial myopathy clinically resembling myotonic dystrophy. Journal of Medical Genetics, 2003, 40, 752-757.	3.2	11
220	Altered Cerebral Glucose Metabolism in a Family With Clinical Features Resembling Mitochondrial Neurogastrointestinal Encephalomyopathy Syndrome in Association With Multiple Mitochondrial DNA Deletions. Archives of Neurology, 2008, 65, 407-11.	4.5	11
221	<i>OPA1</i> mutations induce mtDNA proliferation in leukocytes of patients with dominant optic atrophy. Neurology, 2012, 79, 1515-1517.	1.1	11
222	Initial development and validation of a mitochondrial disease quality of life scale. Neuromuscular Disorders, 2013, 23, 324-329.	0.6	11
223	Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss. American Journal of Human Genetics, 2021, 108, 2006-2016.	6.2	11
224	Spontaneous recovery of a childhood onset mitochondrial myopathy caused by a stop mutation in the mitochondrial cytochrome c oxidase III gene. Journal of Medical Genetics, 2004, 41, e75-e75.	3.2	10
225	ATP Synthase Deficiency due to TMEM70 Mutation Leads to Ultrastructural Mitochondrial Degeneration and Is Amenable to Treatment. BioMed Research International, 2015, 2015, 1-10.	1.9	10
226	Use of stereotypical mutational motifs to define resolution limits for the ultra-deep resequencing of mitochondrial DNA. European Journal of Human Genetics, 2015, 23, 413-415.	2.8	10
227	Lifetime exercise intolerance with lactic acidosis as key manifestation of novel compound heterozygous ACAD9 mutations causing complex I deficiency. Neuromuscular Disorders, 2017, 27, 473-476.	0.6	10
228	Reply: POLR3A variants in hereditary spastic paraplegia and ataxia. Brain, 2018, 141, e2-e2.	7.6	10
229	Targeted Therapies for Hereditary Peripheral Neuropathies: Systematic Review and Steps Towards a â€ ⁻ treatabolomeâ€ ^{-™} . Journal of Neuromuscular Diseases, 2021, 8, 383-400.	2.6	10
230	Exome reanalysis and proteomic profiling identified TRIP4 as a novel cause of cerebellar hypoplasia and spinal muscular atrophy (PCH1). European Journal of Human Genetics, 2021, 29, 1348-1353.	2.8	10
231	A detailed investigation of maternally inherited diabetes and deafness (MIDD) including clinical characteristics, Câ€peptide secretion, HLAâ€DR and â€DQ status and autoantibody pattern. Diabetes/Metabolism Research and Reviews, 2009, 25, 127-135.	4.0	9
232	Reply: Hereditary myopathy with early respiratory failure is caused by mutations in the titin FN3 119 domain. Brain, 2014, 137, e271-e271.	7.6	9
233	<i>COL4A1</i> -related autosomal recessive encephalopathy in 2 Turkish children. Neurology: Genetics, 2020, 6, e392.	1.9	9
234	Results from a 3-year Non-interventional, Observational Disease Monitoring Program in Adults with GNE Myopathy. Journal of Neuromuscular Diseases, 2021, 8, 225-234.	2.6	9

#	Article	IF	Citations
235	Multidrug Resistant Pseudomonas Mycotic Pseudoaneurysm following Cardiac Transplant Bridged by Ventricular Assistant Device. Case Reports in Infectious Diseases, 2017, 2017, 1-4.	0.5	8
236	Behr syndrome and hypertrophic cardiomyopathy in a family with a novel UCHL1 deletion. Journal of Neurology, 2020, 267, 3643-3649.	3.6	8
237	Confirmation of TACO1 as a Leigh Syndrome Disease Gene in Two Additional Families. Journal of Neuromuscular Diseases, 2020, 7, 301-308.	2.6	8
238	Biallelic <i>ADAM22</i> pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy. Brain, 2022, 145, 2301-2312.	7.6	8
239	Molecular and neurological features of MELAS syndrome in paediatric patients: A case series and review of the literature. Molecular Genetics & Enomic Medicine, 2022, 10, e1955.	1.2	8
240	The pathogenic m.3243A>T mitochondrial DNA mutation is associated with a variable neurological phenotype. Neuromuscular Disorders, 2010, 20, 403-406.	0.6	7
241	Late-Onset Sacsinopathy Diagnosed by Exome Sequencing and Comparative Genomic Hybridization. Journal of Neurogenetics, 2013, 27, 176-182.	1.4	7
242	An Unusual Retinal Phenotype Associated With a Mutation in Sterol Carrier Protein SCP2. JAMA Ophthalmology, 2017, 135, 167.	2.5	7
243	Novel <i>SBF2</i> mutations and clinical spectrum of Charcotâ€Marieâ€Tooth neuropathy type 4B2. Clinical Genetics, 2018, 94, 467-472.	2.0	7
244	SIL1 deficiency causes degenerative changes of peripheral nerves and neuromuscular junctions in fish, mice and human. Neurobiology of Disease, 2019, 124, 218-229.	4.4	7
245	INPP5K and SIL1 associated pathologies with overlapping clinical phenotypes converge through dysregulation of PHGDH. Brain, 2021, 144, 2427-2442.	7.6	7
246	[11C]PK11195-PET Brain Imaging of the Mitochondrial Translocator Protein in Mitochondrial Disease. Neurology, 2021, 96, e2761-e2773.	1.1	7
247	A MT-TL1 variant identified by whole exome sequencing in an individual with intellectual disability, epilepsy, and spastic tetraparesis. European Journal of Human Genetics, 2021, 29, 1359-1368.	2.8	7
248	Chronic and slowly progressive weakness of the legs and hands. BMJ, The, 2014, 348, g459-g459.	6.0	6
249	Modifying Mitochondrial tRNAs: Delivering What the Cell Needs. Cell Metabolism, 2015, 21, 351-352.	16.2	6
250	Severe neurodevelopmental disease caused by a homozygous TLK2 variant. European Journal of Human Genetics, 2020, 28, 383-387.	2.8	6
251	Targeted Therapies for Leigh Syndrome: Systematic Review and Steps Towards a †Treatabolome†M. Journal of Neuromuscular Diseases, 2021, 8, 885-897.	2.6	6
252	Autosomal recessive variants in TUBGCP2 alter the \hat{I}^3 -tubulin ring complex leading to neurodevelopmental disease. IScience, 2021, 24, 101948.	4.1	6

#	Article	IF	Citations
253	The swinging pendulum of biomarkers in mitochondrial disease. Neurology, 2016, 87, 2286-2287.	1.1	5
254	Amyloidâ $\hat{\mathfrak{el}^2}$ in mitochondrial disease: mutation in a human metallopeptidase links amyloidotic neurodegeneration with mitochondrial processing. EMBO Molecular Medicine, 2016, 8, 173-175.	6.9	5
255	Identification of Cellular Pathogenicity Markers for SIL1 Mutations Linked to Marinesco-Sjögren Syndrome. Frontiers in Neurology, 2019, 10, 562.	2.4	5
256	Homozygous WASHC4 variant in two sisters causes a syndromic phenotype defined by dysmorphisms, intellectual disability, profound developmental disorder, and skeletal muscle involvement. Journal of Pathology, 2021, , .	4.5	5
257	Modulation of the Acetylcholine Receptor Clustering Pathway Improves Neuromuscular Junction Structure and Muscle Strength in a Mouse Model of Congenital Myasthenic Syndrome. Frontiers in Molecular Neuroscience, 2020, 13, 594220.	2.9	5
258	Variation in MAPT is not a contributing factor to the incomplete penetrance in LHON. Mitochondrion, 2011, 11, 620-622.	3.4	4
259	Respiratory-chain deficiency presenting as diffuse mesangial sclerosis with NPHS3 mutation. Pediatric Nephrology, 2011, 26, 1157-1161.	1.7	4
260	Retrospective assessment of the most common mitochondrial DNA mutations in a large Hungarian cohort of suspect mitochondrial cases. Mitochondrial DNA, 2015, 26, 572-578.	0.6	4
261	Multifocal demyelinating motor neuropathy and hamartoma syndrome associated with a de novo <i>PTEN</i> mutation. Neurology, 2018, 90, e1842-e1848.	1.1	4
262	How to Spot Congenital Myasthenic Syndromes Resembling the Lambert–Eaton Myasthenic Syndrome? A Brief Review of Clinical, Electrophysiological, and Genetics Features. NeuroMolecular Medicine, 2018, 20, 205-214.	3.4	4
263	Inherited neuropathies with predominant upper limb involvement: genetic heterogeneity and overlapping pathologies. European Journal of Neurology, 2021, 28, 297-304.	3.3	4
264	Primary mitochondrial myopathies in childhood. Neuromuscular Disorders, 2021, 31, 978-987.	0.6	4
265	The Human Cytochrome c Oxidase Assembly Factors SCO1 and SCO2 Have Regulatory Roles in the Maintenance of Cellular Copper Homeostasis. Cell Metabolism, 2007, 5, 403.	16.2	3
266	Fibroblast growth factor 21, a biomarker for mitochondrial muscle disease. Neurology, 2013, 81, 1808-1809.	1.1	3
267	An under-recognised cause of spastic paraparesis in middle-aged women. Practical Neurology, 2014, 14, 182-184.	1.1	3
268	Voxel-based analysis in neuroferritinopathy expands the phenotype and determines radiological correlates of disease severity. Journal of Neurology, 2015, 262, 2232-2240.	3.6	3
269	Clinical and Pathological Features of Mitochondrial DNA Deletion Disease Following Antiretroviral Treatment. JAMA Neurology, 2015, 72, 603.	9.0	3
270	Response to Newman et al Genetics in Medicine, 2017, 19, 1380-1380.	2.4	3

#	Article	IF	CITATIONS
271	Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects. Orphanet Journal of Rare Diseases, 2022, 17, 29.	2.7	3
272	Identification of a novel homozygous <i>synthesis of cytochrome c oxidase 2</i> variant in siblings with earlyâ€onset axonal Charcotâ€Marieâ€Tooth disease. Human Mutation, 2022, 43, 477-486.	2.5	3
273	An unusual gait following the discovery of a new disease. Practical Neurology, 2011, 11, 81-84.	1.1	2
274	Childhood presentation of "adult―polyglucosan body disease. Annals of Neurology, 2013, 73, 317-318.	5.3	2
275	Synaptotagmin 2 Mutations Cause an Autosomal-Dominant Form of Lambert-Eaton Myasthenic Syndrome and Nonprogressive Motor Neuropathy. American Journal of Human Genetics, 2014, 95, 472.	6.2	2
276	Nuclear-mitochondrial proteins: too much to process?: Figure 1. Brain, 2015, 138, 1451-1453.	7.6	2
277	Reply: Evaluation of exome sequencing variation in undiagnosed ataxias. Brain, 2015, 138, e384-e384.	7.6	2
278	The Effect of Neurological Genomics and Personalized Mitochondrial Medicine. JAMA Neurology, 2017, 74, 11.	9.0	2
279	Muscle fat replacement and modified ragged red fibers in two patients with reversible infantile respiratory chain deficiency. Neuromuscular Disorders, 2021, 31, 551-557.	0.6	2
280	White Matter Hyperintensities and Cerebral Microbleeds in Ataxia-Telangiectasia. Neurology: Genetics, 2021, 7, e640.	1.9	2
281	Genetic variations within the OPA1 gene are not associated with neuromyelitis optica. Multiple Sclerosis Journal, 2012, 18, 240-243.	3.0	1
282	Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay in the Time of Next-Generation Sequencingâ€"Reply. Archives of Neurology, 2012, 69, 1661.	4.5	1
283	Metabolic stroke in childhood: Diagnostic approach and suggestions for therapy. Journal of Pediatric Neurology, 2015, 08, 321-332.	0.2	1
284	Genetic analyses and clinical features in a series of eight unrelated patients with Glycyl-tRNA synthetase (GARS) variants. Neuromuscular Disorders, 2016, 26, S141.	0.6	1
285	A <i>de novo</i> <scp><i>CSDE1</i></scp> variant causing neurodevelopmental delay, intellectual disability, neurologic and psychiatric symptoms in a child of consanguineous parents. American Journal of Medical Genetics, Part A, 2022, 188, 283-291.	1.2	1
286	Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients., 2020, 88, 251.		1
287	Alpers- and MNGIE-like disease with disturbed CSF folate transport and an unusual mode of genetic transmission of POLG mutations: a case report. Journal of International Child Neurology Association, $2021, 1, \ldots$	0.0	1
288	PAW34 Mutations in OPA1 expand the clinical phenotype of mitochondrial disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, e32-e33.	1.9	0

#	Article	IF	CITATIONS
289	Mitochondriale Erkrankungen. Medizinische Genetik, 2012, 24, 176-182.	0.2	O
290	Riboflavin and CoQ Disorders. , 2014, , 233-244.		0
291	PLP1 mutations and central demyelination. Neurology: Clinical Practice, 2017, 7, 451-454.	1.6	O
292	Clinical Management of Mitochondrial Diseases. , 0, , 59-68.		0
293	Mitochondrial Depletion Syndromes. , 2019, , 183-204.		O
294	Diagnostic Approach to Mitochondrial Diseases. , 2019, , 281-287.		0
295	Mitochondrial Translation Deficiencies. , 2021, , 95-117.		O
296	Modelling Charcot-Marie-Tooth disease in a dish reveals common cell type-specific alterations. Brain, 2021, 144, 2234-2236.	7.6	0
297	NEW GENES AND DISEASES. Neuromuscular Disorders, 2021, 31, S143.	0.6	O
298	Reversible Infantile Respiratory Chain Deficiency., 2016,, 127-133.		0
299	Mitochondrial disorders due to mutations in the nuclear genome. , 2020, , 415-425.		0