Hong Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7104882/hong-liu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

48 2,034 21 45 g-index

48 2,391 8.6 5.53 ext. papers ext. citations avg, IF L-index

#	Paper Paper	IF	Citations
48	Three-dimensional photonic nitrocellulose for minimally invasive detection of biomarker in tumor interstitial fluid. <i>Chemical Engineering Journal</i> , 2022 , 432, 134234	14.7	O
47	Water splitting-assisted electrocatalysis based on dendrimer-encapsulated Au nanoparticles for perspiration glucose analysis. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 912, 116254	4.1	0
46	Mercury thermometer-inspired test strip for concentration cell-based potentiometric detection of salivary hmylase <i>Analytica Chimica Acta</i> , 2022 , 1206, 339770	6.6	2
45	Emerging Tumor-on-Chips with Electrochemical Biosensors. <i>TrAC - Trends in Analytical Chemistry</i> , 2022 , 116640	14.6	2
44	Fetal Movement Detection by Wearable Accelerometer Duo Based on Machine Learning. <i>IEEE Sensors Journal</i> , 2022 , 1-1	4	1
43	Electrochemical DNA synthesis and sequencing on a single electrode with scalability for integrated data storage. <i>Science Advances</i> , 2021 , 7, eabk0100	14.3	1
42	Uncertainties in synthetic DNA-based data storage. <i>Nucleic Acids Research</i> , 2021 , 49, 5451-5469	20.1	5
41	Robust Heart Rate Monitoring by a Single Wrist-Worn Accelerometer Based on Signal Decomposition. <i>IEEE Sensors Journal</i> , 2021 , 21, 15962-15971	4	2
40	Multifunctional hydrogel microsphere with reflection in near-infrared region for in vivo pH monitoring and drug release in tumor microenvironment. <i>Chemical Engineering Journal</i> , 2021 , 421, 127	8 73 .7	4
39	Magnetic Printing of Liquid Metal for Perceptive Soft Actuators with Embodied Intelligence. <i>ACS Applied Materials & Applied & Applied Materials & Applied Materials & Applied & Applied Materials & Applied &</i>	9.5	18
38	Wearable capillary microfluidics for continuous perspiration sensing. <i>Talanta</i> , 2020 , 212, 120786	6.2	21
37	Wearable electrochemical sensors for noninvasive monitoring of health perspective. <i>Current Opinion in Electrochemistry</i> , 2020 , 23, 42-46	7.2	13
36	Micro-/Nanostructured Interface for Liquid Manipulation and Its Applications. <i>Small</i> , 2020 , 16, e190384	1911	39
35	High-Resolution Patterning of Liquid Metal on Hydrogel for Flexible, Stretchable, and Self-Healing Electronics. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900721	6.4	34
34	Biomimetic Meta-Structured Electro-Microfluidics. <i>Advanced Functional Materials</i> , 2019 , 29, 1906745	15.6	12
33	Flourishing Smart Flexible Membranes Beyond Paper. <i>Analytical Chemistry</i> , 2019 , 91, 4224-4234	7.8	11
32	Integration of patterned photonic nitrocellulose and microfluidic chip for fluorescent point-of-care testing of multiple targets. <i>New Journal of Chemistry</i> , 2019 , 43, 4808-4814	3.6	1

31	A Versatile Approach for Direct Patterning of Liquid Metal Using Magnetic Field. <i>Advanced Functional Materials</i> , 2019 , 29, 1901370	15.6	67
30	Bio-inspired photonic crystals for naked eye quantification of nucleic acids. <i>Analyst, The</i> , 2019 , 144, 541	3 ₅ 5419	9 8
29	Efficient isolation and sensitive quantification of extracellular vesicles based on an integrated ExoID-Chip using photonic crystals. <i>Lab on A Chip</i> , 2019 , 19, 2897-2904	7.2	29
28	Water Splitting-Assisted Electrocatalytic Oxidation of Glucose with a Metal-Organic Framework for Wearable Nonenzymatic Perspiration Sensing. <i>Analytical Chemistry</i> , 2019 , 91, 10764-10771	7.8	39
27	Bioinspired multistructured paper microfluidics for POCT. Lab on A Chip, 2019, 19, 3602-3608	7.2	14
26	Concentration cell-based potentiometric analysis for point-of-care testing with minimum background. <i>Analytica Chimica Acta</i> , 2019 , 1046, 110-114	6.6	3
25	Cardiomyocyte-Driven Structural Color Actuation in Anisotropic Inverse Opals. ACS Nano, 2019, 13, 796	-8627	66
24	Electrocatalytic oxidation of glucose on bronze for monitoring of saliva glucose using a smart toothbrush. <i>Sensors and Actuators B: Chemical</i> , 2019 , 285, 56-61	8.5	31
23	Visualized Quantitation of Trace Nucleic Acids Based on the Coffee-Ring Effect on Colloid-Crystal Substrates. <i>Langmuir</i> , 2019 , 35, 248-253	4	12
22	Bioinspired Kirigami Fish-Based Highly Stretched Wearable Biosensor for Human Biochemical Physiological Hybrid Monitoring. <i>Advanced Materials Technologies</i> , 2018 , 3, 1700308	6.8	40
21	Toward Quantitative Chemical Analysis Using a Ruler on Paper: An Approach to Transduce Color to Length Based on Coffee-Ring Effect. <i>Analytical Chemistry</i> , 2018 , 90, 1482-1486	7.8	35
20	Recent biomedical applications of bio-sourced materials. <i>Bio-Design and Manufacturing</i> , 2018 , 1, 26-44	4.7	10
19	Flexible Electronics Based on Micro/Nanostructured Paper. Advanced Materials, 2018, 30, e1801588	24	185
18	A bio-inspired photonic nitrocellulose array for ultrasensitive assays of single nucleic acids. <i>Analyst, The,</i> 2018 , 143, 4559-4565	5	15
17	Ultrasensitive point-of-care testing of arsenic based on a catalytic reaction of unmodified gold nanoparticles. <i>New Journal of Chemistry</i> , 2018 , 42, 14857-14862	3.6	3
16	Fabric-Based Ion Concentration Polarization for Pump-Free Water Desalination. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 99-103	8.3	13
15	Converting colour to length based on the coffee-ring effect for quantitative immunoassays using a ruler as readout. <i>Lab on A Chip</i> , 2018 , 18, 271-275	7.2	28
14	Generating Microdroplet Array on Photonic Pseudo-paper for Absolute Quantification of Nucleic Acids. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 39144-39150	9.5	25

13	Nonenzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose. <i>ACS Sensors</i> , 2018 , 3, 1135-1141	9.2	65
12	Patterned Photonic Nitrocellulose for Pseudopaper ELISA. <i>Analytical Chemistry</i> , 2017 , 89, 7727-7733	7.8	38
11	Transpiration-Inspired Fabrication of Opal Capillary with Multiple Heterostructures for Multiplex Aptamer-Based Fluorescent Assays. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 32577-32582	9.5	18
10	Vertical Paper Analytical Devices Fabricated Using the Principles of Quilling and Kirigami. <i>Scientific Reports</i> , 2017 , 7, 7255	4.9	13
9	Patterned Photonic Nitrocellulose for Pseudo-Paper Microfluidics. <i>Analytical Chemistry</i> , 2016 , 88, 5424	-9 7.8	52
8	Smartphone-based point-of-care testing of salivary the mylase for personal psychological measurement. <i>Analyst, The</i> , 2015 , 140, 7399-406	5	54
7	Bottom-up fabrication of paper-based microchips by blade coating of cellulose microfibers on a patterned surface. <i>Langmuir</i> , 2014 , 30, 15041-6	4	20
6	Paper-based SlipPAD for high-throughput chemical sensing. <i>Analytical Chemistry</i> , 2013 , 85, 4263-7	7.8	91
5	Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. <i>Analytical Chemistry</i> , 2012 , 84, 2528-32	7.8	204
4	Aptamer-Based Origami Paper Analytical Device for Electrochemical Detection of Adenosine. <i>Angewandte Chemie</i> , 2012 , 124, 7031-7034	3.6	73
3	Aptamer-based origami paper analytical device for electrochemical detection of adenosine. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 6925-8	16.4	216
2	Three-dimensional paper microfluidic devices assembled using the principles of origami. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17564-6	16.4	397
1	Nonenzymatic Electrochemical Sensor for Wearable Interstitial Fluid Glucose Monitoring.	3	4