Dianxing Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7104727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The physiochemical and nutritional properties of high endosperm lipids rice mutants under artificially accelerated ageing. LWT - Food Science and Technology, 2022, 154, 112730.	5.2	8
2	Germinated highâ€resistant starch rice: A potential novel functional food. International Journal of Food Science and Technology, 2022, 57, 5439-5449.	2.7	5
3	Polymorphisms in <i>cis</i> â€elements confer <i>SAUR26</i> gene expression difference for thermoâ€response natural variation in Arabidopsis. New Phytologist, 2021, 229, 2751-2764.	7.3	19

 $_{4}$ Combination of High Zn Density and Low Phytic Acid for Improving Zn Bioavailability in Rice (Oryza) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

5	<i>LAZY2</i> controls rice tiller angle through regulating starch biosynthesis in gravityâ€sensing cells. New Phytologist, 2021, 231, 1073-1087.	7.3	27
6	Physicochemical characterizations of starches isolated from Tetrastigma hemsleyanum Diels et Gilg. International Journal of Biological Macromolecules, 2021, 183, 1540-1547.	7.5	8
7	Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas (L.) Lam.). Scientific Reports, 2021, 11, 17116.	3.3	9
8	Rice varieties with a high endosperm lipid content have reduced starch digestibility and increased Î ³ -oryzanol bioaccessibility. Food and Function, 2021, 12, 11547-11556.	4.6	12
9	MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 7095.	4.1	3
10	ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Molecular Plant, 2020, 13, 1784-1801.	8.3	70
11	Identifying genes for resistant starch, slowly digestible starch, and rapidly digestible starch in rice using genome-wide association studies. Genes and Genomics, 2020, 42, 1227-1238.	1.4	11
12	The effects of internal endosperm lipids on starch properties: Evidence from rice mutant starches. Journal of Cereal Science, 2019, 89, 102804.	3.7	24
13	High-throughput method for preliminary screening of high dietary fiber rice. Food Chemistry, 2019, 300, 125192.	8.2	2
14	A novel starch: Characterizations of starches separated from tea (Camellia sinensis (L.) O. Ktze) seed. International Journal of Biological Macromolecules, 2019, 139, 1085-1091.	7.5	5
15	Natural variations of growth thermoâ€responsiveness determined by <scp>SAUR</scp> 26/27/28 proteins in <i>Arabidopsis thaliana</i> . New Phytologist, 2019, 224, 291-305.	7.3	16
16	A Trypsin Family Protein Gene Controls Tillering and Leaf Shape in Barley. Plant Physiology, 2019, 181, 701-713.	4.8	17
17	Endogenous rice endosperm hemicellulose slows <i>inÂvitro</i> starch digestibility. International Journal of Food Science and Technology, 2019, 54, 734-743.	2.7	11
18	Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. International Journal of Biological Macromolecules, 2019, 128, 775-781.	7.5	48

DIANXING WU	
-------------	--

#	Article	IF	CITATIONS
19	Dependence of physiochemical, functional and textural properties of highâ€resistant starch rice on endogenous nonstarch polysaccharides. International Journal of Food Science and Technology, 2018, 53, 1079-1086.	2.7	18
20	<scp>MOS</scp> 1 functions closely with <scp>TCP</scp> transcription factors to modulate immunity and cell cycle in Arabidopsis. Plant Journal, 2018, 93, 66-78.	5.7	42
21	Genetic differentiation and diversity upon genotype and phenotype in cowpea (Vigna unguiculata L.) Tj ETQq1	1 0.78431 1.2	4 rgBT /Overlo
22	Metabolite Profiling of a Zinc-Accumulating Rice Mutant. Journal of Agricultural and Food Chemistry, 2017, 65, 3775-3782.	5.2	5
23	Association Analysis of Arsenic-Induced Straighthead in Rice (Oryza sativa L.) Based on the Selected Population with a Modified Model. BioMed Research International, 2017, 2017, 1-6.	1.9	4
24	Functional Characterization of <i>9-/13-LOXs</i> in Rice and Silencing Their Expressions to Improve Grain Qualities. BioMed Research International, 2016, 2016, 1-8.	1.9	12
25	Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp). PLoS ONE, 2016, 11, e0160941.	2.5	120
26	Genetic analysis of genetic basis of a physiological disorder "straighthead―in rice (Oryza sativa L.). Genes and Genomics, 2016, 38, 453-457.	1.4	7
27	Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12844-12849.	7.1	154
28	Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice. Plant Science, 2015, 237, 24-32.	3.6	51
29	Characterization and comparative profiling of the small RNA transcriptomes in two phases of flowering in Cymbidium ensifolium. BMC Genomics, 2015, 16, 622.	2.8	22
30	Effects of grain development on formation of resistant starch in rice. Food Chemistry, 2014, 164, 89-97.	8.2	28
31	Effects of gamma irradiation on starch digestibility of rice with different resistant starch content. International Journal of Food Science and Technology, 2013, 48, 35-43.	2.7	16
32	Unraveling the Complex Trait of Harvest Index with Association Mapping in Rice (Oryza sativa L.). PLoS ONE, 2012, 7, e29350.	2.5	88
33	Allelic Analysis of Sheath Blight Resistance with Association Mapping in Rice. PLoS ONE, 2012, 7, e32703.	2.5	93
34	Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Planta, 2011, 234, 347-361.	3.2	72
35	A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley. Functional and Integrative Genomics, 2011, 11, 103-110.	3.5	41
36	Searching for Germplasm Resistant to Sheath Blight from the USDA Rice Core Collection. Crop Science, 2011, 51, 1507-1517.	1.8	15

DIANXING WU

#	Article	IF	CITATIONS
37	Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection. Genetica, 2010, 138, 1221-1230.	1.1	76

The Influences of Chain Length of Amylopectin on Resistant Starch in Rice ($\langle b \rangle \langle i \rangle$ Oryza sativa $\langle i \rangle \langle b \rangle$) Tj ETQq0 Q.Q rgBT /Qverlock 10

39	Starch Structure and Digestibility of Rice High in Resistant Starch. Starch/Staerke, 2006, 58, 411-417.	2.1	30
40	COMPARATIVE STUDIES ON MAJOR NUTRITIONAL COMPONENTS OF RICE WITH A GIANT EMBRYO AND A NORMAL EMBRYO. Journal of Food Biochemistry, 2005, 29, 653-661.	2.9	47
41	Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science, 2004, 40, 231-237.	3.7	254
42	COMPARATIVE STUDIES ON MAJOR NUTRITIONAL COMPONENTS AND PHYSICOCHEMICAL PROPERTIES OF THE TRANSGENIC RICE WITH A SYNTHETIC Cry1Ab GENE FROM BACILLUS THURINGIENSIS. Journal of Food Biochemistry, 2003, 27, 295-308.	2.9	5
43	Development and Characterization of A Low Starch Viscosity Rice Mutant. Cereal Research Communications, 2002, 30, 301-305.	1.6	0
44	Improving Hydrophilicity of Wheat Starch via Sodium Dodecyl Sulfate Treatment. Starch/Staerke, 0, , 2200002.	2.1	0