Lin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7104726/publications.pdf

Version: 2024-02-01

36303 30922 10,849 127 51 102 citations h-index g-index papers 127 127 127 14432 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 2010, 35, 837-867.	24.7	1,482
2	Chitosanâ€Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery. Small, 2011, 7, 1569-1578.	10.0	800
3	Waterâ€Soluble Poly(<i>N</i> à€isopropylacrylamide)–Graphene Sheets Synthesized via Click Chemistry for Drug Delivery. Advanced Functional Materials, 2011, 21, 2754-2763.	14.9	426
4	Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS Applied Materials & (Interfaces, 2017, 9, 26429-26437.)	8.0	374
5	Grapheneâ€Based Materials for Energy Conversion. Advanced Materials, 2012, 24, 4203-4210.	21.0	303
6	Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chemical Communications, 2011, 47, 5235.	4.1	298
7	Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydrate Polymers, 2011, 83, 1908-1915.	10.2	246
8	Poly(vinyl alcohol) Nanocomposites Filled with Poly(vinyl alcohol)-Grafted Graphene Oxide. ACS Applied Materials & (Interfaces, 2012, 4, 2387-2394.	8.0	240
9	Gel Network Structure of Methylcellulose in Water. Langmuir, 2001, 17, 8062-8068.	3.5	226
10	Thermally Induced Association and Dissociation of Methylcellulose in Aqueous Solutions. Langmuir, 2002, 18, 7291-7298.	3.5	209
11	The application of graphene oxide in drug delivery. Expert Opinion on Drug Delivery, 2012, 9, 1365-1376.	5.0	200
12	Thermal Gelation of Methylcellulose in Water:  Scaling and Thermoreversibility. Macromolecules, 2002, 35, 5990-5998.	4.8	191
13	3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. ACS Applied Materials & Interfaces, 2017, 9, 20086-20097.	8.0	191
14	Review of 3D printable hydrogels and constructs. Materials and Design, 2018, 159, 20-38.	7.0	182
15	Rheological Images of Poly(vinyl chloride) Gels. 1. The Dependence of Solâ^'Gel Transition on Concentation. Macromolecules, 1997, 30, 7835-7841.	4.8	157
16	Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 961-967.	7.6	145
17	Recoverable and Self-Healing Double Network Hydrogel Based on κ-Carrageenan. ACS Applied Materials & Interfaces, 2016, 8, 29749-29758.	8.0	143
18	Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	140

#	Article	IF	CITATIONS
19	Salt-Assisted and Salt-Suppressed Solâ-'Gel Transitions of Methylcellulose in Water. Langmuir, 2004, 20, 646-652.	3.5	133
20	Thermo- and pH-Responsive Association Behavior of Dual Hydrophilic Graft Chitosan Terpolymer Synthesized via ATRP and Click Chemistry. Macromolecules, 2010, 43, 5679-5687.	4.8	130
21	Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites Part A: Applied Science and Manufacturing, 2010, 41, 419-426.	7.6	129
22	Enhanced stability and mechanical strength of sodium alginate composite films. Carbohydrate Polymers, 2017, 160, 62-70.	10.2	124
23	Fabrication of quercetin nanocrystals: Comparison of different methods. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 113-121.	4.3	119
24	Functionalized Graphene Oxide as Nanocarrier for Loading and Delivery of Ellagic Acid. Current Medicinal Chemistry, 2011, 18, 4503-4512.	2.4	115
25	Release of theophylline from polymer blend hydrogels. International Journal of Pharmaceutics, 2005, 298, 117-125.	5.2	110
26	Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Materials Chemistry and Physics, 2009, 117, 313-320.	4.0	107
27	Noncovalently Functionalized Multiwalled Carbon Nanotubes by Chitosan-Grafted Reduced Graphene Oxide and Their Synergistic Reinforcing Effects in Chitosan Films. ACS Applied Materials & Driver (1974) Among Interfaces, 2011, 3, 4819-4830.	8.0	107
28	A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41473-41481.	8.0	103
29	Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids and Surfaces B: Biointerfaces, 2011, 88, 121-130.	5.0	101
30	Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension. International Journal of Pharmaceutics, 2010, 383, 285-292.	5.2	97
31	Specific Functionalization of Carbon Nanotubes for Advanced Polymer Nanocomposites. Advanced Functional Materials, 2009, 19, 3962-3971.	14.9	93
32	Chemical functionalization of graphene oxide for improving mechanical and thermal properties of polyurethane composites. Materials and Design, 2015, 85, 808-814.	7.0	93
33	Controllable Gelation of Methylcellulose by a Salt Mixture. Langmuir, 2004, 20, 6134-6138.	3.5	92
34	Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technology, 2012, 223, 59-64.	4.2	92
35	A novel hybrid magnetorheological elastomer developed by 3D printing. Materials and Design, 2017, 114, 391-397.	7.0	91
36	Rheological Properties and Scaling Laws of κ-Carrageenan in Aqueous Solution. Macromolecules, 2015, 48, 7649-7657.	4.8	87

#	Article	IF	CITATIONS
37	Isothermal Titration Calorimetric Studies on Interactions of Ionic Surfactant and Poly(oxypropylene)â°'Poly(oxyethylene)â°' Poly(oxypropylene) Triblock Copolymers in Aqueous Solutions. Macromolecules, 2001, 34, 7049-7055.	4.8	85
38	Recent progress of magnetorheological elastomers: a review. Smart Materials and Structures, 2020, 29, 123002.	3.5	84
39	Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding. ACS Applied Materials & Diterfaces, 2018, 10, 11164-11174.	8.0	82
40	Micellization to gelation of a triblock copolymer in water: Thermoreversibility and scaling. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2014-2025.	2.1	73
41	Thermoreversible and salt-sensitive turbidity of methylcellulose in aqueous solution. Polymer, 2005, 46, 7410-7417.	3.8	72
42	Thermoreversible gelation and scaling behavior of Ca2+-induced \hat{l}^2 -carrageenan hydrogels. Food Hydrocolloids, 2016, 61, 793-800.	10.7	72
43	A new type of vibration isolator based on magnetorheological elastomer. Materials and Design, 2018, 157, 431-436.	7.0	71
44	Development of hybrid magnetorheological elastomers by 3D printing. Polymer, 2018, 149, 213-228.	3.8	69
45	Thermo-Responsive Association of Chitosan- <i>graft</i> -Poly(<i>N</i> -Isopropylacrylamide) in Aqueous Solutions. Journal of Physical Chemistry B, 2010, 114, 10666-10673.	2.6	66
46	Interactions between Ionic Surfactants and Polysaccharides in Aqueous Solutions. Macromolecules, 2008, 41, 9406-9412.	4.8	61
47	Static yield stress of ferrofluid-based magnetorheological fluids. Rheologica Acta, 2009, 48, 457-466.	2.4	61
48	Nanostructured tungsten carbide/carbon composites synthesized by a microwave heating method as supports of platinum catalysts for methanol oxidation. Journal of Power Sources, 2012, 202, 56-62.	7.8	59
49	Effects of a PPOâ^'PEOâ^'PPO Triblock Copolymer on Micellization and Gelation of a PEOâ^'PPOâ^'PEO Triblock Copolymer in Aqueous Solution. Langmuir, 2005, 21, 9068-9075.	3.5	56
50	Rheological Images of Poly(vinyl chloride) Gels. 3. Elasticity Evolution and the Scaling Law beyond the Solâ^Gel Transition. Macromolecules, 1998, 31, 740-745.	4.8	55
51	Complementary effects of multiwalled carbon nanotubes and conductive carbon black on polyamide 6. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1203-1212.	2.1	54
52	Current Advances in the Carbon Nanotube/Thermotropic Main-Chain Liquid Crystalline Polymer Nanocomposites and Their Blends. Polymers, 2012, 4, 889-912.	4.5	54
53	Scaling law and microstructure of alginate hydrogel. Carbohydrate Polymers, 2016, 135, 101-109.	10.2	54
54	Annealing induced electrical conductivity jump of multiâ€walled carbon nanotube/polypropylene composites and influence of molecular weight of polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2238-2247.	2.1	53

#	Article	IF	CITATIONS
55	Thermoreversible gelation and viscoelasticity of \hat{I}^2 -carrageenan hydrogels. Journal of Rheology, 2016, 60, 203-214.	2.6	53
56	Sol-gel transition of methylcellulose in phosphate buffer saline solutions. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1849-1860.	2.1	50
57	Rheological Images of Poly(vinyl chloride) Gels. 6. Effect of Temperature. Macromolecules, 1998, 31, 8117-8123.	4.8	49
58	A strategy for strong interface bonding by 3D bioprinting of oppositely charged \hat{l}^2 -carrageenan and gelatin hydrogels. Carbohydrate Polymers, 2018, 198, 261-269.	10.2	48
59	Preparation, characterization and properties of polycaprolactone diol-functionalized multi-walled carbon nanotube/thermoplastic polyurethane composite. Composites Part A: Applied Science and Manufacturing, 2015, 70, 8-15.	7.6	47
60	SDS-aided immobilization and controlled release of camptothecin from agarose hydrogel. European Journal of Pharmaceutical Sciences, 2005, 25, 237-244.	4.0	46
61	Stepped association of combâ€like and stimuliâ€responsive graft chitosan copolymer synthesized using ATRP and active ester conjugation methods. Journal of Polymer Science Part A, 2009, 47, 6682-6692.	2.3	46
62	Carbon Nanomaterials for Drug Delivery. Key Engineering Materials, 2012, 508, 76-80.	0.4	46
63	Rheological Images of Poly(vinyl chloride) Gels. 5. Effect of Molecular Weight Distribution. Macromolecules, 1998, 31, 7472-7478.	4.8	44
64	Influence of cetyltrimethylammonium bromide on physicochemical properties and microstructures of chitosan–TPP nanoparticles in aqueous solutions. Journal of Colloid and Interface Science, 2008, 328, 270-277.	9.4	43
65	Improvement in properties of multiwalled carbon nanotube/polypropylene nanocomposites through homogeneous dispersion with the aid of surfactants. Journal of Applied Polymer Science, 2012, 124, 1117-1127.	2.6	43
66	Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid. Journal of Colloid and Interface Science, 2010, 348, 265-270.	9.4	42
67	Percolation and gel-like behavior of multiwalled carbon nanotube/polypropylene composites influenced by nanotube aspect ratio. Polymer, 2013, 54, 1218-1226.	3.8	40
68	Micro-DSC and Rheological Studies of Interactions between Methylcellulose and Surfactants. Journal of Physical Chemistry B, 2007, 111, 6410-6416.	2.6	39
69	RECENT ADVANCES IN GRAPHENE-BASED NANOMATERIALS FOR BIOMEDICAL APPLICATIONS. Nano LIFE, 2012, 02, 1230001.	0.9	39
70	Effects of SDS on the sol–gel transition of methylcellulose in water. Polymer, 2006, 47, 1372-1378.	3.8	38
71	Fabrication of superhydrophobic hybrids from multiwalled carbon nanotubes and poly(vinylidene) Tj ETQq $1\ 1\ 0.78$	84314 rgB 4.7	BT /Qverlock
72	Thermoreversible micellization and gelation of a blend of pluronic polymers. Polymer, 2008, 49, 1952-1960.	3.8	37

#	Article	IF	CITATIONS
73	Multiple Phase Transition and Scaling Law for Poly(ethylene oxide)–Poly(propylene) Tj ETQq1 1 0.784314 rgBT Interfaces, 2015, 7, 2688-2697.	Overlock 8.0	10 Tf 50 74 36
74	Novel approach to fibrillation of LCP in an LCP/PP blend. Journal of Applied Polymer Science, 2002, 86, 2070-2078.	2.6	35
75	A hybrid magnetorheological elastomer developed by encapsulation of magnetorheological fluid. Journal of Materials Science, 2018, 53, 7004-7016.	3.7	35
76	Covalent functionalization of carbon nanotubes for ultimate interfacial adhesion to liquid crystalline polymer. Soft Matter, 2011, 7, 9505.	2.7	34
77	Long-term stability of quercetin nanocrystals prepared by different methods. Journal of Pharmacy and Pharmacology, 2012, 64, 1394-1402.	2.4	34
78	Immobilization of camptothecin with surfactant into hydrogel for controlled drug release. European Polymer Journal, 2006, 42, 1767-1774.	5.4	31
79	Synthesis and characterization of iron-based alloy nanoparticles for magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 2008, 320, 2030-2038.	2.3	30
80	Carbon nanotube/polypropylene composite particles for microwave welding. Journal of Applied Polymer Science, 2012, 126, E283.	2.6	30
81	Characterization of supramolecular gels based on \hat{l}^2 -cyclodextrin and polyethyleneglycol and their potential use for topical drug delivery. Materials Science and Engineering C, 2015, 50, 242-250.	7.3	30
82	Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension. Journal of Pharmacy and Pharmacology, 2010, 62, 413-421.	2.4	29
83	Thermoreversible gelation and scaling laws for graphene oxide-filled κ-carrageenan hydrogels. European Polymer Journal, 2016, 79, 150-162.	5.4	29
84	Steady-state fluorescence study on release of camptothecin from agar hydrogel. International Journal of Pharmaceutics, 2004, 287, 13-19.	5.2	28
85	Preparation and properties of chitosan nanocomposite films reinforced by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) treated carbon nanotubes. Materials Chemistry and Physics, 2011, 129, 932-938.	4.0	28
86	Particle size reduction of poorly water soluble artemisinin via antisolvent precipitation with a syringe pump. Powder Technology, 2013, 237, 468-476.	4.2	27
87	Dot-patterned hybrid magnetorheological elastomer developed by 3D printing. Journal of Magnetism and Magnetic Materials, 2020, 494, 165825.	2.3	27
88	Dissolution Enhancement of Artemisinin with .BETACyclodextrin. Chemical and Pharmaceutical Bulletin, 2011, 59, 646-652.	1.3	26
89	Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. Journal of Thermal Analysis and Calorimetry, 2012, 109, 17-25.	3.6	26
90	Magnetic circuit analysis to obtain the magnetic permeability of magnetorheological elastomers. Journal of Intelligent Material Systems and Structures, 2018, 29, 2946-2953.	2.5	25

#	Article	IF	CITATIONS
91	Thermal decomposition kinetics of multiwalled carbon nanotube/polypropylene nanocomposites. Journal of Thermal Analysis and Calorimetry, 2014, 117, 63-71.	3.6	24
92	Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier. Materials Science and Engineering C, 2011, 31, 391-399.	7.3	23
93	Role of PPO–PEO–PPO triblock copolymers in phase transitions of a PEO–PPO–PEO triblock copolymer in aqueous solution. European Polymer Journal, 2015, 71, 423-439.	5.4	21
94	Effect of graphene-oxide enhancement on large-deflection bending performance of thermoplastic polyurethane elastomer. Composites Part B: Engineering, 2016, 89, 1-8.	12.0	21
95	Soft hybrid magnetorheological elastomer: Gap bridging between MR fluid and MR elastomer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123975.	4.7	21
96	Effects of magnetic field on the sol–gel transition of methylcellulose in water. Carbohydrate Polymers, 2007, 70, 345-349.	10.2	19
97	Efficient nano-regional photocatalytic heterostructure design via the manipulation of reaction site self-quenching effect. Applied Catalysis B: Environmental, 2019, 243, 220-228.	20.2	19
98	Effect of Carbon Nanotubes and Processing Methods on the Properties of Carbon Nanotube/Polypropylene Composites. Journal of Nanoscience and Nanotechnology, 2009, 9, 5910-5919.	0.9	18
99	Fabrication of composite microparticles of artemisinin for dissolution enhancement. Powder Technology, 2010, 203, 277-287.	4.2	18
100	Molecular interactions between PEO–PPO–PEO and PPO–PEO–PPO triblock copolymers in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 485-497.	4.7	18
101	Unique gelation of chitosan in an alkali/urea aqueous solution. Polymer, 2018, 141, 124-131.	3.8	18
102	The Role of Functionalized Carbon Nanotubes in a PA6/LCP Blend. Journal of Nanoscience and Nanotechnology, 2010, 10, 5242-5251.	0.9	17
103	Line-patterned hybrid magnetorheological elastomer developed by 3D printing. Journal of Intelligent Material Systems and Structures, 2020, 31, 377-388.	2.5	17
104	Diffusion of camptothecin immobilized with cationic surfactant into agarose hydrogel containing anionic carrageenan. Journal of Biomedical Materials Research - Part A, 2007, 83A, 1103-1109.	4.0	16
105	Micro-DSC, rheological and NMR investigations of the gelation of gallic acid and xyloglucan. Soft Matter, 2012, 8, 7258.	2.7	14
106	Microphase Separation and Gelation of Methylcellulose in the Presence of Gallic Acid and NaCl as an In Situ Gel-Forming Drug Delivery System. AAPS PharmSciTech, 2017, 18, 605-616.	3.3	14
107	Nitrophenyl functionalization of carbon nanotubes and its effect on properties of MWCNT/LCP composites. Macromolecular Research, 2011, 19, 660-667.	2.4	13
108	Thermal, mechanical and tribological properties of polyamide 6 matrix composites containing different carbon nanofillers. Journal of Polymer Engineering, 2015, 35, 367-376.	1.4	13

#	Article	IF	CITATIONS
109	In situ mucoadhesive hydrogel based on methylcellulose/xyloglucan for periodontitis. Journal of Sol-Gel Science and Technology, 2019, 89, 531-542.	2.4	13
110	Strengthening of liquid crystalline polymer by functionalized carbon nanotubes through interfacial interaction and homogeneous dispersion. Polymers for Advanced Technologies, 2011, 22, 1452-1458.	3.2	12
111	Thermo-responsive transfection of DNA complexes with well-defined chitosan terpolymers. Soft Matter, 2012, 8, 2518.	2.7	12
112	Modified supercritical antisolvent method with enhanced mass transfer to fabricate drug nanoparticles. Materials Science and Engineering C, 2013, 33, 2864-2870.	7.3	12
113	ON THE EXTENDED RUTGERS–DELAWARE RULE FOR MR SUSPENSIONS UNDER MAGNETIC FIELDS. International Journal of Modern Physics B, 2006, 20, 579-592.	2.0	10
114	Effect of functionalized graphene oxide on gelation and scaling law of alginate in aqueous solution. European Polymer Journal, 2017, 95, 462-473.	5.4	9
115	Improvement of Properties of Polyetherimide/Liquid Crystalline Polymer Blends in the Presence of Functionalized Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 1928-1934.	0.9	8
116	Artemisinin–Polyvinylpyrrolidone Composites Prepared by Evaporative Precipitation of Nanosuspension for Dissolution Enhancement. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 363-378.	3.5	7
117	Enhancing electrical and tribological properties of poly(methyl methacrylate) matrix nanocomposite films by co-incorporation of multiwalled carbon nanotubes and silicon dioxide microparticles. Journal of Polymer Engineering, 2016, 36, 23-30.	1.4	7
118	Effects of convergent flow onin situ fibrillation of TLCP in PEN. Journal of Applied Polymer Science, 2004, 91, 1505-1513.	2.6	6
119	Highly electrically conductive and injection moldable polymeric composites. Journal of Applied Polymer Science, 2011, 121, 2969-2975.	2.6	6
120	Investigation of the efficiency of gelation of melamine with the positional isomers of aminobenzoic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 118-126.	4.7	6
121	3D Printed Magnetorheological Elastomers. , 2017, , .		6
122	Preparation and characterization of θ° -carrageenan and xyloglucan blends for sustained release of a hydrophilic drug. Polymer Bulletin, 2015, 72, 1647-1661.	3.3	5
123	Preparation and Characterization of Temperatureâ€Sensitive Poly(Styreneâ€Butadieneâ€Styrene)/Poly(Nâ€Isopropylacrylamide) Hydrogel Elastomer with Interpenetrating Polymeric Networks. Macromolecular Materials and Engineering, 2019, 304, 1800783.	3.6	5
124	Delicate manipulation of cobalt oxide nanodot clusterization on binder-free TiO2-nanorod photoanodes for efficient photoelectrochemical catalysis. Journal of Alloys and Compounds, 2020, 820, 153139.	5.5	5
125	Investigating the Behavior of Mucoadhesive Polysaccharide-Functionalized Graphene Oxide in Bladder Environment. ACS Applied Bio Materials, 2021, 4, 630-639.	4.6	5
126	Complex characterization and formation mechanism of scallop (<i>Patinopecten yessoensis</i>) protein hydrolysates/ <i>κ</i> â€carrageenan/konjac gum composite gels. Journal of Food Science, 2022, 87, 2953-2964.	3.1	4

#	Article	IF	CITATIONS
127	Patterned Magnetorheological Elastomer Developed by 3D Printing. Materials Science Forum, 2018, 939, 147-152.	0.3	2