Raymond Reid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7104167/publications.pdf

Version: 2024-02-01

623734 642732 1,122 33 14 23 citations g-index h-index papers 34 34 34 1363 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficacy and safety of seven-valent conjugate pneumococcal vaccine in American Indian children: group randomised trial. Lancet, The, 2003, 362, 355-361.	13.7	351
2	Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomised double-blind placebo-controlled trial. Lancet Infectious Diseases, The, 2015, 15, 1398-1408.	9.1	157
3	Impact of More Than a Decade of Pneumococcal Conjugate Vaccine Use on Carriage and Invasive Potential in Native American Communities. Journal of Infectious Diseases, 2012, 205, 280-288.	4.0	92
4	Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathogens, 2018, 14, e1007438.	4.7	74
5	Invasive Pneumococcal Disease a Decade after Pneumococcal Conjugate Vaccine Use in an American Indian Population at High Risk for Disease. Clinical Infectious Diseases, 2010, 50, 1238-1246.	5.8	68
6	Epidemiology of Invasive Streptococcus pneumoniae among Navajo Children in the Era before Use of Conjugate Pneumococcal Vaccines, 1989-1996. American Journal of Epidemiology, 2004, 160, 270-278.	3.4	50
7	Impact of the 13-Valent Pneumococcal Conjugate Vaccine on Pneumococcal Carriage Among American Indians. Pediatric Infectious Disease Journal, 2016, 35, 907-914.	2.0	49
8	Nasopharyngeal Carriage of Streptococcus pneumoniae in Navajo and White Mountain Apache Children Before the Introduction of Pneumococcal Conjugate Vaccine. Pediatric Infectious Disease Journal, 2009, 28, 711-716.	2.0	40
9	Nasopharyngeal Carriage and Transmission of Streptococcus pneumoniae in American Indian Households after a Decade of Pneumococcal Conjugate Vaccine Use. PLoS ONE, 2014, 9, e79578.	2.5	36
10	Efficacy, safety and immunogenicity of a pneumococcal protein-based vaccine co-administered with 13-valent pneumococcal conjugate vaccine against acute otitis media in young children: A phase IIb randomized study. Vaccine, 2019, 37, 7482-7492.	3.8	31
11	The impact of serotype-specific vaccination on phylodynamic parameters of Streptococcus pneumoniae and the pneumococcal pan-genome. PLoS Pathogens, 2018, 14, e1006966.	4.7	25
12	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biology, 2020, 18, e3000878.	5.6	24
13	Pneumococcal protein antigen serology varies with age and may predict antigenic profile of colonizing isolates. Journal of Infectious Diseases, 2017, 215, jiw628.	4.0	18
14	The Impact of a Home-Based Diabetes Prevention and Management Program on High-Risk American Indian Youth. The Diabetes Educator, 2016, 42, 585-595.	2.5	18
15	A Home-Visiting Diabetes Prevention and Management Program for American Indian Youth. The Diabetes Educator, 2015, 41, 729-747.	2.5	17
16	Association of Laboratory Methods, Colonization Density, and Age With Detection of Streptococcus pneumoniae in the Nasopharynx. American Journal of Epidemiology, 2019, 188, 2110-2119.	3.4	14
17	Norovirus and Sapovirus Epidemiology and Strain Characteristics among Navajo and Apache Infants. PLoS ONE, 2017, 12, e0169491.	2.5	13
18	Family Spirit Nurture (FSN) – a randomized controlled trial to prevent early childhood obesity in American Indian populations: trial rationale and study protocol. BMC Obesity, 2019, 6, 18.	3.1	11

#	Article	lF	CITATIONS
19	The burden of Staphylococcus aureus among Native Americans on the Navajo Nation. PLoS ONE, 2019, 14, e0213207.	2.5	9
20	Effect of a Home-Visiting Intervention to Reduce Early Childhood Obesity Among Native American Children. JAMA Pediatrics, 2021, 175, 133.	6.2	8
21	Water quality, availability, and acute gastroenteritis on the Navajo Nation – a pilot case-control study. Journal of Water and Health, 2018, 16, 1018-1028.	2.6	4
22	2213. Etiology of Community-Acquired Pneumonia (CAP) in Hospitalized Native American Adults. Open Forum Infectious Diseases, 2019, 6, S754-S755.	0.9	1
23	Empowering Native Adolescents: Responsibility for Their Health Behaviors. American Journal of Health Behavior, 2021, 45, 3-16.	1.4	1
24	Tribal Sovereignty in Research and Community Engagement for a COVID-19 Vaccine Clinical Trial on the Navajo Nation: Beyond a Facebook Town Hall. American Journal of Public Health, 2021, 111, 1431-1432.	2.7	1
25	Centering the Strengths of American Indian Culture, Families and Communities to Overcome Type 2 Diabetes. Frontiers in Public Health, 2021, 9, 788285.	2.7	1
26	555. The Burden of Invasive Staphylococcus Aureus Disease Among Native Americans on the Navajo Nation. Open Forum Infectious Diseases, 2019, 6, S263-S263.	0.9	0
27	Evaluation of indoor PM2.5 concentrations in a Native American Community: a pilot study. Journal of Exposure Science and Environmental Epidemiology, 2021, , .	3.9	0
28	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae., 2020, 18, e3000878.		0
29	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae., 2020, 18, e3000878.		0
30	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae., 2020, 18, e3000878.		0
31	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae., 2020, 18, e3000878.		0
32	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae., 2020, 18, e3000878.		0
33	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. , 2020, 18, e3000878.		O