Jingping Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7104130/publications.pdf

Version: 2024-02-01

394421 377865 1,208 42 19 34 citations g-index h-index papers 42 42 42 1416 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effect of support modification and precursor decomposition method on the properties of CoPt/ZrO2 Fischer–Tropsch catalysts. Catalysis Today, 2021, 375, 1-9.	4.4	9
2	Co ₃ O ₄ Nanowire Arrays Grown on Carbon Nanotube-Based Films for Fischer–Tropsch Synthesis. ACS Applied Nano Materials, 2021, 4, 7811-7819.	5.0	2
3	Organic-solvent assisted synthesis of highly dispersed iron based Fischer-Tropsch catalysts with MCF support: The effect of organic-solvent. Fuel, 2021, , 122666.	6.4	1
4	Construction of three-dimensional nitrogen-doped graphene aerogel (NGA) supported cobalt catalysts for Fischer-Tropsch synthesis. Catalysis Today, 2020, 355, 10-16.	4.4	12
5	Preparation of mesoporous aluminosilicates with tunable morphologies and their effects on Fischer–Tropsch synthesis performance. Journal of Porous Materials, 2020, 27, 217-223.	2.6	1
6	Amino-Ended Hyperbranched Polyamide Modified SBA-15 as Support for Highly Efficient Cobalt Fischer-Tropsch Synthesis Catalyst. Macromolecular Research, 2020, 28, 228-233.	2.4	2
7	The effect of Mn on the performance of MCF-supported highly dispersed iron catalysts for Fischer–Tropsch synthesis. Catalysis Science and Technology, 2020, 10, 502-509.	4.1	15
8	Preparation of Highly Dispersed Nb ₂ O ₅ Supported Cobalt-Based Catalysts for the Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2020, 59, 17315-17327.	3.7	7
9	Tuning the Metal–Support Interaction and Enhancing the Stability of Titania-Supported Cobalt Fischer–Tropsch Catalysts via Carbon Nitride Coating. ACS Catalysis, 2020, 10, 5554-5566.	11.2	39
10	Plasma-Assisted Preparation of CoRu/SiO2 Catalysts for Enhanced Fischer-Tropsch Synthesis Performance: Effect of Plasma Atmosphere. Journal of Nanoscience and Nanotechnology, 2020, 20, 1232-1237.	0.9	0
11	Plasma Assisted Preparation of CoPt/SiO ₂ Fischerâ€Tropsch Catalysts: A Comparison of the Precursor Preâ€Thermal Treated Temperatures. Energy Technology, 2019, 7, 224-232.	3.8	8
12	Properties of Carbon Xerogels Supported Cobaltâ€Based Catalysts and Their Performance in CO Hydrogenation Reaction. ChemistrySelect, 2019, 4, 11110-11115.	1.5	1
13	Plasma assisted carburization of CoPt/TiO2 catalysts with improved Fischer-Tropsch synthesis performance. Fuel, 2019, 254, 115577.	6.4	12
14	Plasma assisted preparation of nickel-based catalysts supported on CeO2 with different morphologies for hydrogen production by glycerol steam reforming. Powder Technology, 2019, 354, 324-332.	4.2	21
15	Evolution of cobalt species in glow discharge plasma prepared CoRu/SiO2 catalysts with enhanced Fischer-Tropsch synthesis performance. Journal of Catalysis, 2019, 374, 246-256.	6.2	14
16	Preparation of stable and highly active Ni/CeO2 catalysts by glow discharge plasma technique for glycerol steam reforming. Applied Catalysis B: Environmental, 2019, 249, 257-265.	20.2	80
17	Products selectivity and reaction stability of cobalt-based Fischer-Tropsch catalysts affected by glow discharge plasma treatment and silica structure. Catalysis Today, 2019, 337, 139-146.	4.4	9
18	Effect of Ni Content of Ni/γâ€Al ₂ O ₃ Catalysts Prepared by the Atomic Layer Deposition Method on CO ₂ Reforming of Methane. Energy Technology, 2019, 7, 1800359.	3.8	14

#	Article	IF	CITATIONS
19	Effect of TiO ₂ Surface Engineering on the Performance of Cobalt-Based Catalysts for Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2019, 58, 1095-1104.	3.7	10
20	Hydrothermal Carbon-Coated TiO ₂ as Support for Co-Based Catalyst in Fischer–Tropsch Synthesis. ACS Catalysis, 2018, 8, 1591-1600.	11.2	74
21	Plasma-Assisted Preparation of Highly Dispersed Cobalt Catalysts for Enhanced Fischer–Tropsch Synthesis Performance. ACS Catalysis, 2018, 8, 6177-6185.	11.2	60
22	Fischer–Tropsch Synthesis Bifunctional Catalysts: Cobalt Supported on 3D Mesoporous Cellular Silica Foams Assembled by Using ZSMâ€5 Seeds. ChemCatChem, 2017, 9, 3895-3903.	3.7	8
23	The effect of the nanofibrous Al ₂ O ₃ aspect ratio on Fischer–Tropsch synthesis over cobalt catalysts. Nanoscale, 2017, 9, 570-581.	5.6	25
24	Synthesis of γ-Al2O3 nanofibers stabilized Co3O4 nanoparticles as highly active and stable Fischer–Tropsch synthesis catalysts. Fuel, 2016, 180, 777-784.	6.4	43
25	Promotion effects of plasma treatment on silica supports and catalyst precursors for cobalt Fischer–Tropsch catalysts. RSC Advances, 2016, 6, 57701-57708.	3.6	18
26	Fischer–Tropsch synthesis over a 3D foamed MCF silica support: Toward a more open porous network of cobalt catalysts. Journal of Catalysis, 2016, 340, 205-218.	6.2	55
27	Speciation of Ruthenium as a Reduction Promoter of Silica-Supported Co Catalysts: A Time-Resolved in Situ XAS Investigation. ACS Catalysis, 2015, 5, 1273-1282.	11.2	76
28	ZSM-5 seed-grafted SBA-15 as a high performance support for cobalt Fischer–Tropsch synthesis catalysts. Catalysis Science and Technology, 2015, 5, 4985-4990.	4.1	16
29	Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement: Reducibility and performance (Review). Catalysis Today, 2015, 256, 41-48.	4.4	55
30	Catalytic performance of Co/Zn–Al2O3 Fischer–Tropsch catalysts: a comparative study of zinc introduction methodologies. RSC Advances, 2015, 5, 60534-60540.	3.6	15
31	Improved low-temperature activity of La–Sr–Co–O nano-composite for CO oxidation by phase cooperation. RSC Advances, 2014, 4, 61476-61481.	3.6	9
32	Ru catalysts supported on Al–SBA-15 with high aluminum content and their bifunctional catalytic performance in Fischer–Tropsch synthesis. Catalysis Science and Technology, 2014, 4, 1005.	4.1	19
33	Effect of Different Reaction Conditions on the Deactivation of Alumina-Supported Cobalt Fischer–Tropsch Catalysts in a Milli-Fixed-Bed Reactor: Experiments and Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 6913-6922.	3.7	42
34	Oxidative Degradation of Organic Dyes Over Supported Perovskite Oxide LaFeO3/SBA-15 Under Ambient Conditions. Catalysis Letters, 2013, 143, 887-894.	2.6	47
35	Effects of Ru nanoparticle sizes confined in cavities of SBA-16 on the catalytic performance of Fischer-Tropsch synthesis reaction. Journal of Natural Gas Chemistry, 2012, 21, 673-679.	1.8	12
36	A Timeâ€Resolved In Situ Quickâ€XAS Investigation of Thermal Activation of Fischer–Tropsch Silicaâ€Supported Cobalt Catalysts. Chemistry - A European Journal, 2012, 18, 2802-2805.	3.3	24

#	Article	IF	CITATIONS
37	Impact of sorbitol addition on the structure and performance of silica-supported cobalt catalysts for Fischer–Tropsch synthesis. Catalysis Today, 2011, 175, 528-533.	4.4	39
38	Plasma-assisted design of supported cobalt catalysts for Fischer-Tropsch synthesis. Studies in Surface Science and Catalysis, 2010, , 253-257.	1.5	8
39	Cobalt species and cobalt-support interaction in glow discharge plasma-assisted Fischer–Tropsch catalysts. Journal of Catalysis, 2010, 273, 9-17.	6.2	103
40	Effects of zirconia promotion on the structure and performance of smaller and larger pore silica-supported cobalt catalysts for Fischer–Tropsch synthesis. Applied Catalysis A: General, 2010, 382, 28-35.	4.3	36
41	In situXRD investigation of the evolution of alumina-supported cobaltcatalysts under realistic conditions of Fischer-Tropsch synthesis. Chemical Communications, 2010, 46, 788-790.	4.1	110
42	Effect of promotion with ruthenium on the structure and catalytic performance of mesoporous silica (smaller and larger pore) supported cobalt Fischer–Tropsch catalysts. Catalysis Today, 2009, 140, 135-141.	4.4	57