Neil J Bulleid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7104097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of the UPR sensor ATF6α is regulated by its redox-dependent dimerization and ER retention by ERp18. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122657119.	3.3	15
2	A cytosolic reductase pathway is required for efficient N-glycosylation of an STT3B-dependent acceptor site. Journal of Cell Science, 2021, 134, .	1.2	3
3	Mechanisms of Disulfide Bond Formation in Nascent Polypeptides Entering the Secretory Pathway. Cells, 2020, 9, 1994.	1.8	36
4	The mammalian cytosolic thioredoxin reductase pathway acts via a membrane protein to reduce ER-localised proteins. Journal of Cell Science, 2020, 133, .	1.2	15
5	Structure and Electron-Transfer Pathway of the Human Methionine Sulfoxide Reductase MsrB3. Antioxidants and Redox Signaling, 2020, 33, 665-678.	2.5	4
6	Protein secondary structure determines the temporal relationship between folding and disulfide formation. Journal of Biological Chemistry, 2020, 295, 2438-2448.	1.6	16
7	<scp>ER</scp> p18 regulates activation of <scp>ATF</scp> 6α during unfolded protein response. EMBO Journal, 2019, 38, e100990.	3.5	44
8	Methionine sulfoxide reductase B3 requires resolving cysteine residues for full activity and can act as a stereospecific methionine oxidase. Biochemical Journal, 2018, 475, 827-838.	1.7	13
9	How Are Proteins Reduced in the Endoplasmic Reticulum?. Trends in Biochemical Sciences, 2018, 43, 32-43.	3.7	82
10	Mix-and-Match Proteomics: Using Advanced Iodoacetyl Tandem Mass Tag Multiplexing To Investigate Cysteine Oxidation Changes with Respect to Protein Expression. Analytical Chemistry, 2018, 90, 14173-14180.	3.2	4
11	Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the <scp>ER</scp> . EMBO Journal, 2017, 36, 693-702.	3.5	65
12	Folding of a single domain protein entering the endoplasmic reticulum precedes disulfide formation. Journal of Biological Chemistry, 2017, 292, 6978-6986.	1.6	34
13	lgC light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design. Biochemical Journal, 2017, 474, 3179-3188.	1.7	14
14	Inhibition of IRE1α-mediated XBP1 mRNA cleavage by XBP1 reveals a novel regulatory process during the unfolded protein response. Wellcome Open Research, 2017, 2, 36.	0.9	19
15	The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme. Biochemical Journal, 2016, 473, 851-858.	1.7	15
16	Thiol-disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme. Biochemical Journal, 2015, 469, 279-288.	1.7	47
17	Detecting peroxiredoxin hyperoxidation by one-dimensional isoelectric focusing. Biophysics Reports, 2015, 1, 14-17.	0.2	2
18	Division of labor among oxidoreductases: TMX1 preferentially acts on transmembrane polypeptides. Molecular Biology of the Cell, 2015, 26, 3390-3400.	0.9	24

Neil J Bulleid

#	Article	IF	CITATIONS
19	Regulating the level of intracellular hydrogen peroxide: the role of peroxiredoxin IV. Biochemical Society Transactions, 2014, 42, 42-46.	1.6	12
20	Lack of an Efficient Endoplasmic Reticulum-localized Recycling System Protects Peroxiredoxin IV from Hyperoxidation. Journal of Biological Chemistry, 2014, 289, 5490-5498.	1.6	22
21	Inactivation of mammalian Ero1α is catalysed by specific protein disulfide-isomerases. Biochemical Journal, 2014, 461, 107-113.	1.7	20
22	Redox regulation in the endoplasmic reticulum. Biochemical Society Transactions, 2014, 42, 905-908.	1.6	15
23	Forming disulfides in the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2425-2429.	1.9	93
24	ERdj5 Is the ER Reductase that Catalyzes the Removal of Non-Native Disulfides and Correct Folding of the LDL Receptor. Molecular Cell, 2013, 50, 793-804.	4.5	116
25	Proteolytic processing of QSOX1A ensures efficient secretion of a potent disulfide catalyst. Biochemical Journal, 2013, 454, 181-190.	1.7	27
26	Solving the mystery of procollagen chain selectivity. Nature Structural and Molecular Biology, 2012, 19, 977-978.	3.6	3
27	Efficient Glycosylphosphatidylinositol (GPI) Modification of Membrane Proteins Requires a C-terminal Anchoring Signal of Marginal Hydrophobicity. Journal of Biological Chemistry, 2012, 287, 16399-16409.	1.6	35
28	Disulfide Bond Formation in the Mammalian Endoplasmic Reticulum. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013219-a013219.	2.3	99
29	Multiple ways to make disulfides. Trends in Biochemical Sciences, 2011, 36, 485-492.	3.7	199
30	Protein Folding and Modification in the Mammalian Endoplasmic Reticulum. Annual Review of Biochemistry, 2011, 80, 71-99.	5.0	563
31	Real-time monitoring of redox changes in the mammalian endoplasmic reticulum. Journal of Cell Science, 2011, 124, 2349-2356.	1.2	91
32	Divalent cations regulate the folding and activation status of integrins during their intracellular trafficking. Journal of Cell Science, 2011, 124, 1672-1680.	1.2	78
33	Crystal Structure of Reduced and of Oxidized Peroxiredoxin IV Enzyme Reveals a Stable Oxidized Decamer and a Non-disulfide-bonded Intermediate in the Catalytic Cycle. Journal of Biological Chemistry, 2011, 286, 42257-42266.	1.6	67
34	Wild-type and missense mutants of retinoschisin co-assemble resulting in either intracellular retention or incorrect assembly of the functionally active octamer. Biochemical Journal, 2010, 425, 275-284.	1.7	16
35	Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO Journal, 2010, 29, 4185-4197.	3.5	213
36	Peroxiredoxin IV protects cells from oxidative stress by removing H2O2 produced during disulphide formation. Journal of Cell Science, 2010, 123, 2672-2679.	1.2	148

Neil J Bulleid

#	Article	IF	CITATIONS
37	The Reduction Potential of the Active Site Disulfides of Human Protein Disulfide Isomerase Limits Oxidation of the Enzyme by Ero1α. Journal of Biological Chemistry, 2010, 285, 29200-29207.	1.6	71
38	Molecular Mechanisms Regulating Oxidative Activity of the Ero1 Family in the Endoplasmic Reticulum. Antioxidants and Redox Signaling, 2010, 13, 1177-1187.	2.5	90
39	Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. Journal of Cell Science, 2009, 122, 4287-4295.	1.2	168
40	ERp57 is involved in the oxidative folding of the low-density lipoprotein receptor in the endoplasmic reticulum. Bioscience Horizons, 2009, 2, 13-21.	0.6	0
41	Substrate Specificity of the Oxidoreductase ERp57 Is Determined Primarily by Its Interaction with Calnexin and Calreticulin. Journal of Biological Chemistry, 2009, 284, 2194-2202.	1.6	74
42	Disulfide Formation in the ER and Mitochondria: Two Solutions to a Common Process. Science, 2009, 324, 1284-1287.	6.0	227
43	Low reduction potential of Ero1α regulatory disulphides ensures tight control of substrate oxidation. EMBO Journal, 2008, 27, 2988-2997.	3.5	130
44	Formation of a Major Histocompatibility Complex Class I Tapasin Disulfide Indicates a Change in Spatial Organization of the Peptide-loading Complex during Assembly. Journal of Biological Chemistry, 2008, 283, 1862-1869.	1.6	22
45	Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochemical Journal, 2008, 411, 191-199.	1.7	134
46	Real-Time Fluorescence Detection of ERAD Substrate Retrotranslocation inÂaÂMammalian In Vitro System. Cell, 2007, 129, 943-955.	13.5	122
47	Intracellular catalysis of disulfide bond formation by the human sulfhydryl oxidase, QSOX1. Biochemical Journal, 2007, 404, 403-411.	1.7	83
48	ERp57 is essential for efficient folding of glycoproteins sharing common structural domains. EMBO Journal, 2007, 26, 28-40.	3.5	177
49	The role of glutathione in disulphide bond formation and endoplasmicâ€reticulumâ€generated oxidative stress. EMBO Reports, 2006, 7, 271-275.	2.0	376
50	Differential Oxidation of HLA-B2704 and HLA-B2705 in Lymphoblastoid and Transfected Adherent Cells. Antioxidants and Redox Signaling, 2006, 8, 292-299.	2.5	12
51	Tissue-specific Expression and Dimerization of the Endoplasmic Reticulum Oxidoreductase Ero1β. Journal of Biological Chemistry, 2005, 280, 33066-33075.	1.6	78
52	Species specific membrane anchoring of nyctalopin, a small leucine-rich repeat protein. Human Molecular Genetics, 2005, 14, 1877-1887.	1.4	32
53	Glutathione Is Required to Regulate the Formation of Native Disulfide Bonds within Proteins Entering the Secretory Pathway. Journal of Biological Chemistry, 2004, 279, 39872-39879.	1.6	159
54	Glutathione Directly Reduces an Oxidoreductase in the Endoplasmic Reticulum of Mammalian Cells. Journal of Biological Chemistry, 2004, 279, 55341-55347.	1.6	144

NEIL J BULLEID

#	Article	IF	CITATIONS
55	Oxidative protein folding in the mammalian endoplasmic reticulum. Biochemical Society Transactions, 2004, 32, 655-658.	1.6	68
56	Protein folding and translocation across the endoplasmic reticulum membrane (Review). Molecular Membrane Biology, 2003, 20, 99-104.	2.0	41
57	The Endoplasmic Reticulum (ER) Translocon Can Differentiate between Hydrophobic Sequences Allowing Signals for Glycosylphosphatidylinositol Anchor Addition to Be Fully Translocated into the ER Lumen. Journal of Biological Chemistry, 2003, 278, 51749-51757.	1.6	25
58	Sequence-specific Recognition of Collagen Triple Helices by the Collagen-specific Molecular Chaperone HSP47. Journal of Biological Chemistry, 2002, 277, 35007-35012.	1.6	56
59	ls protein disulfide isomerase a redox-dependent molecular chaperone?. EMBO Journal, 2002, 21, 6763-6770.	3.5	80
60	Major histocompatibility class I folding, assembly, and degradation: A paradigm for two-stage quality control in the endoplasmic reticulum. Progress in Molecular Biology and Translational Science, 2001, 67, 235-268.	1.9	5
61	Quality control in the endoplasmic reticulum. Current Biology, 2001, 11, 1114-1118.	1.8	64
62	Early Events in Glycosylphosphatidylinositol Anchor Addition. Journal of Biological Chemistry, 2001, 276, 15975-15982.	1.6	33
63	Protein-specific chaperones: The role of hsp47 begins to gel. Current Biology, 2000, 10, R912-R915.	1.8	47
64	ERO1-L, a Human Protein That Favors Disulfide Bond Formation in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2000, 275, 4827-4833.	1.6	264
65	Endoplasmic Reticulum Oxidoreductin 1-Lβ (ERO1-Lβ), a Human Gene Induced in the Course of the Unfolded Protein Response. Journal of Biological Chemistry, 2000, 275, 23685-23692.	1.6	239
66	The Role of ERp57 in Disulfide Bond Formation during the Assembly of Major Histocompatibility Complex Class I in a Synchronized Semipermeabilized Cell Translation System. Journal of Biological Chemistry, 2000, 275, 14933-14938.	1.6	76
67	Pivotal Role of Calnexin and Mannose Trimming in Regulating the Endoplasmic Reticulum-associated Degradation of Major Histocompatibility Complex Class I Heavy Chain. Journal of Biological Chemistry, 2000, 275, 21224-21232.	1.6	54
68	Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen. EMBO Journal, 2000, 19, 2204-2211.	3.5	198
69	Folding and Assembly of Type X Collagen Mutants That Cause Metaphyseal Chondrodysplasia-type Schmid. Journal of Biological Chemistry, 1999, 274, 7570-7575.	1.6	21
70	Intracellular Retention of Procollagen within the Endoplasmic Reticulum Is Mediated by Prolyl 4-Hydroxylase. Journal of Biological Chemistry, 1999, 274, 14884-14892.	1.6	89
71	Expression of an engineered form of recombinant procollagen in mouse milk. Nature Biotechnology, 1999, 17, 385-389.	9.4	84
72	Measuring the Folding Dynamics of Recombinant Proteins Secreted from Mammalian Cells. Methods in Biotechnology, 1999, , 255-261.	0.2	0

NEIL J BULLEID

#	Article	IF	CITATIONS
73	Molecular recognition in procollagen chain assembly. Matrix Biology, 1998, 16, 369-377.	1.5	106
74	A cautionary note when using pepsin as a probe for the formation of a collagen triple helix. Matrix Biology, 1998, 17, 233-236.	1.5	2
75	Protein disulfide Isomerase Acts as a Molecular Chaperone during the Assembly of Procollagen. Journal of Biological Chemistry, 1998, 273, 9637-9643.	1.6	129
76	Thiol-independent interaction of protein disulphide isomerase with type X collagen during intra-cellular folding and assembly. Biochemical Journal, 1998, 331, 793-800.	1.7	49
77	Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO Journal, 1997, 16, 908-916.	3.5	135
78	Interaction of the Thiol-Dependent Reductase ERp57 with Nascent Glycoproteins. Science, 1997, 275, 86-88.	6.0	376
79	Novel approach to study the initial events in the folding and assembly of procollagen. Seminars in Cell and Developmental Biology, 1996, 7, 667-672.	2.3	17
80	Type-III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation. Biochemical Journal, 1996, 317, 195-202.	1.7	70
81	Intracellular dissociation and reassembly of prolyl 4-hydroxylase:the α-subunits associated with the immunoglobulin-heavy-chain binding protein (BiP) allowing reassembly with the β-subunit. Biochemical Journal, 1996, 317, 659-665.	1.7	21
82	Folding of Human Intestinal Lactase-phlorizin Hydrolase. Journal of Biological Chemistry, 1995, 270, 18678-18684.	1.6	13
83	Intracellular Folding of Tissue-type Plasminogen Activator. Journal of Biological Chemistry, 1995, 270, 4797-4804.	1.6	118
84	Prolyl 4-Hydroxylase: Defective Assembly of .alphaSubunit Mutants Indicates That Assembled .alphaSubunits Are Intramolecularly Disulfide Bonded. Biochemistry, 1994, 33, 14018-14025.	1.2	40
85	Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature, 1988, 335, 649-651.	13.7	354
86	Induction of microsomal epoxide hydrolase by nitrosamines in rat liver. Biochemical Pharmacology, 1988, 37, 297-302.	2.0	12
87	Alterations in the metabolism of 7,12-dimethylbenz[a]anthracene and various xenobiotics by rat hepatic microsomes following Sudan III treatment in vivo. Carcinogenesis, 1985, 6, 469-472.	1.3	12
88	Effects of metyrapone and norharmane on microsomal mono-oxygenase and epoxide hydrolase activities. Biochemical Pharmacology, 1984, 33, 1451-1457.	2.0	23
89	Inhibition of IRE1α-mediated XBP1 mRNA cleavage by XBP1 reveals a novel regulatory process during the unfolded protein response. Wellcome Open Research, 0, 2, 36.	0.9	9