Jalaj Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7104017/publications.pdf

Version: 2024-02-01

1040056 996975 25 255 9 15 citations h-index g-index papers 25 25 25 212 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Microstructure Based Elasto-Plastic Polygonal FEM and CDM Approach to Evaluate LCF Life in Titanium Alloys. International Journal of Mechanical Sciences, 2022, 225, 107356.	6.7	8
2	Variability in Fatigue Life of Near-α Titanium Alloy IMI 834. Transactions of the Indian Institute of Metals, 2021, 74, 979-989.	1.5	1
3	Monitoring of Elastoplastic Fracture Behavior of HSLA Steel Using Acoustic Emission Testing. Materials Evaluation, 2021, 79, 383-390.	0.2	О
4	A polygonal FEM and continuum damage mechanics based framework for stochastic simulation of fatigue life scatter in duplex microstructure titanium alloys. Mechanics of Materials, 2021, 163, 104071.	3.2	14
5	Damage Assessment of 2.5D C/SiC Ceramic Matrix Composite: Effect of Fibre Off-Axis Orientation. Transactions of the Indian Institute of Metals, 2020, 73, 999-1006.	1.5	5
6	Failure of Locking Wires of an Aeroengine Component: Attributed Primarily to Over-twisting and Secondarily to Engine Vibration and Improper Material Selection. Journal of Failure Analysis and Prevention, 2019, 19, 890-902.	0.9	1
7	Creep-fatigue damage simulation at multiple length scales for an aeroengine titanium alloy. International Journal of Fatigue, 2018, 116, 505-512.	5.7	14
8	Creep-fatigue damage modeling in Ti-6Al-4V alloy: A mechanistic approach. International Journal of Fatigue, 2017, 98, 62-67.	5.7	6
9	Microtexture Analysis and Modeling of Ambient Fatigue and Creep-Fatigue Damages in Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 648-658.	2.2	10
10	Observation of Etch-Pits and LAGB Configurations During Ambient Creep of Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2560-2565.	2.2	6
11	Analysis and Modeling of Thermal Signatures for Fatigue Damage Characterization in Ti–6Al–4V Titanium Alloy. Journal of Nondestructive Evaluation, 2016, 35, 1.	2.4	7
12	Acoustic emission studies for characterization of fatigue crack growth behavior in HSLA steel. Nondestructive Testing and Evaluation, 2016, 31, 77-96.	2.1	15
13	Creep–Fatigue Interactions in Ti-6Al-4V Alloy at Ambient Temperature. Transactions of the Indian Institute of Metals, 2016, 69, 349-352.	1.5	7
14	Effect of cyclic heat treatment and swaging on mechanical properties of the tungsten heavy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 656, 256-265.	5.6	42
15	Characterization of fracture and deformation mechanism in a high strength beta titanium alloy Ti-10-2-3 using EBSD technique. Materials Science & Department of Structural Materials: Properties, Microstructure and Processing, 2015, 623, 49-58.	5.6	22
16	Simulation of elevated temperature fatigue damage evolution using the finite element method for near alpha titanium alloy. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 466-474.	3.4	8
17	Acoustic Emission During Tensile Deformation of Smooth and Notched Specimens of Near Alpha Titanium Alloy. Research in Nondestructive Evaluation, 2012, 23, 17-31.	1.1	19
18	Strain rate effect on deformation kinetics: Infrared radiation thermography application. Materials Science and Technology, 2011, 27, 132-135.	1.6	1

#	Article	IF	CITATION
19	High-temperature low cycle fatigue damage assessment in near alpha IMI-834 titanium alloy. Fatigue and Fracture of Engineering Materials and Structures, 2011, 34, 131-138.	3.4	8
20	Ambient and high temperature in situ damage evolution in nickel based IN 718 super alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4009-4013.	5.6	4
21	Evolution of Damage in Near $\hat{l}\pm$ IMI-834 Titanium Alloy Under Monotonic Loading Condition: A Continuum Damage Mechanics Approach. Journal of Engineering Materials and Technology, Transactions of the ASME, 2009, 131, .	1.4	10
22	Acoustic Emission Study on Effect of Stress Triaxiality on Damage Micromechanisms in Near Alpha Titanium Alloy. Journal of Nondestructive Evaluation, 2009, 28, 85-90.	2.4	6
23	Stress triaxiality effect on fracture behavior of IMI-834 titanium alloy: A micromechanics approach. Materials & Design, 2009, 30, 1118-1123.	5.1	22
24	Thermographic studies on IMI-834 titanium alloy during tensile loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 496, 303-307.	5.6	12
25	Damage micromechanisms in IMI-834 titanium alloy: Stress triaxiality effects. Transactions of the Indian Institute of Metals, 2008, 61, 415-417.	1.5	7