Jennifer L Estall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7103431/publications.pdf

Version: 2024-02-01

48 papers

6,469 citations

30 h-index 233125 45 g-index

54 all docs

54 docs citations

54 times ranked 10929 citing authors

#	Article	IF	CITATIONS
1	Islet Biology During COVID-19: Progress and Perspectives. Canadian Journal of Diabetes, 2022, 46, 419-427.	0.4	2
2	The IncRNA H19-Derived MicroRNA-675 Promotes Liver Necroptosis by Targeting FADD. Cancers, 2021, 13, 411.	1.7	28
3	Lower plasma PCSK9 in normocholesterolemic subjects is associated with upregulated adipose tissue surfaceâ€expression of LDLR and CD36 and NLRP3 inflammasome. Physiological Reports, 2021, 9, e14721.	0.7	15
4	Diet-Induced Models of Non-Alcoholic Fatty Liver Disease: Food for Thought on Sugar, Fat, and Cholesterol. Cells, 2021, 10, 1805.	1.8	60
5	The Tetracycline-Controlled Transactivator (Tet-On/Off) System in \hat{I}^2 -Cells Reduces Insulin Expression and Secretion in Mice. Diabetes, 2021, 70, 2850-2859.	0.3	7
6	The Gly482Ser Polymorphism Affects PGC-1α Stability in INS-1 β-Cells. Canadian Journal of Diabetes, 2021, 45, S34-S35.	0.4	0
7	75 - The Gly482Ser Polymorphism Affects PGC-1α Stability and Function in INS-1 β-Cells. Canadian Journal of Diabetes, 2020, 44, S30-S31.	0.4	O
8	Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E863-E876.	1.8	21
9	Of Mice and Men, Redux: Modern Challenges in \hat{I}^2 Cell Gene Targeting. Endocrinology, 2020, $161,.$	1.4	11
10	PGC- $1\hat{l}_{\pm}$ isoforms coordinate to balance hepatic metabolism and apoptosis in inflammatory environments. Molecular Metabolism, 2020, 34, 72-84.	3.0	26
11	Mitochondrial Dysfunction in the Transition from NASH to HCC. Metabolites, 2019, 9, 233.	1.3	60
12	LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force. Skeletal Muscle, 2019, 9, 26.	1.9	25
13	PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4285-4290.	3.3	77
14	Linking Metabolic Disease With the PGC-1α Gly482Ser Polymorphism. Endocrinology, 2018, 159, 853-865.	1.4	24
15	Peptide-based sequestration of the adaptor protein Nck1 in pancreatic \hat{l}^2 cells enhances insulin biogenesis and protects against diabetogenic stresses. Journal of Biological Chemistry, 2018, 293, 12516-12524.	1.6	7
16	The pancreas: Bandmaster of glucose homeostasis. Experimental Cell Research, 2017, 360, 19-23.	1.2	25
17	Estrogen Signals Through Peroxisome Proliferator-Activated Receptorâ [^] γ Coactivator 1α to Reduce Oxidative Damage Associated With Diet-Induced Fatty Liver Disease. Gastroenterology, 2017, 152, 243-256.	0.6	132
18	Searching for the β-Cell Fountain of Youth. Endocrinology, 2016, 157, 3388-3390.	1.4	0

#	Article	IF	Citations
19	PGC-1 coactivators in \hat{l}^2 -cells regulate lipid metabolism and are essential for insulin secretion coupled to fatty acids. Molecular Metabolism, 2015, 4, 811-822.	3.0	46
20	Phenotypic Characterization of MIP-CreERT1Lphi Mice With Transgene-Driven Islet Expression of Human Growth Hormone. Diabetes, 2015, 64, 3798-3807.	0.3	77
21	To Be(ta Cell) or Not to Be(ta cell): New Mouse Models for Studying Gene Function in the Pancreatic β-Cell. Endocrinology, 2015, 156, 2365-2367.	1.4	4
22	An Intimate Relationship between ROS and Insulin Signalling: Implications for Antioxidant Treatment of Fatty Liver Disease. International Journal of Cell Biology, 2014, 2014, 1-9.	1.0	41
23	\hat{l}^2 -Aminoisobutyric Acid Induces Browning of White Fat and Hepatic \hat{l}^2 -Oxidation and Is Inversely Correlated with Cardiometabolic Risk Factors. Cell Metabolism, 2014, 19, 96-108.	7.2	489
24	Loss of <i>Pgc-1α</i> expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E157-E167.	1.8	84
25	The Protein Level of PGC-1α, a Key Metabolic Regulator, Is Controlled by NADH-NQO1. Molecular and Cellular Biology, 2013, 33, 2603-2613.	1.1	77
26	A PGC-1α Isoform Induced by Resistance Training Regulates Skeletal Muscle Hypertrophy. Cell, 2012, 151, 1319-1331.	13.5	548
27	The Foxo Family: Partners in Crime or Silent Heroes. Endocrinology, 2012, 153, 549-551.	1.4	7
28	Development of insulin resistance in mice lacking PGC- $1\hat{1}$ in adipose tissues. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9635-9640.	3.3	248
29	Integrated Regulation of Hepatic Metabolism by Fibroblast Growth Factor 21 (FGF21) in Vivo. Endocrinology, 2011, 152, 2996-3004.	1.4	206
30	The Unfolded Protein Response Mediates Adaptation to Exercise in Skeletal Muscle through a PGC-1α/ATF6α Complex. Cell Metabolism, 2011, 13, 160-169.	7.2	250
31	Transcriptional Control of Adipose Lipid Handling by IRF4. Cell Metabolism, 2011, 13, 249-259.	7.2	508
32	Separation of the gluconeogenic and mitochondrial functions of PGC- $1\hat{l}_{\pm}$ through S6 kinase. Genes and Development, 2011, 25, 1232-1244.	2.7	93
33	Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation, 2011, 121, 96-105.	3.9	1,036
34	Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature, 2010, 466, 451-456.	13.7	793
35	PGC-1α regulates a HIF2α-dependent switch in skeletal muscle fiber types. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21866-21871.	3.3	121
36	Sensitivity of Lipid Metabolism and Insulin Signaling to Genetic Alterations in Hepatic Peroxisome Proliferator–Activated Receptor-γ Coactivator-1α Expression. Diabetes, 2009, 58, 1499-1508.	0.3	135

#	Article	IF	CITATIONS
37	PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22510-22515.	3.3	114
38	ErbB Signaling Is Required for the Proliferative Actions of GLP-2 in the Murine Gut. Gastroenterology, 2009, 137, 986-996.	0.6	83
39	GLP-1 receptor activation improves \hat{l}^2 cell function and survival following induction of endoplasmic reticulum stress. Cell Metabolism, 2006, 4, 391-406.	7.2	375
40	Glucagon and Glucagon-Like Peptide Receptors as Drug Targets. Current Pharmaceutical Design, 2006, 12, 1731-1750.	0.9	82
41	Glucagon-Like Peptide-2. Annual Review of Nutrition, 2006, 26, 391-411.	4.3	125
42	Tales beyond the Crypt: Glucagon-Like Peptide-2 and Cytoprotection in the Intestinal Mucosa. Endocrinology, 2005, 146, 19-21.	1.4	19
43	The Glucagon-like Peptide-2 Receptor C Terminus Modulates β-Arrestin-2 Association but Is Dispensable for Ligand-induced Desensitization, Endocytosis, and G-protein-dependent Effector Activation. Journal of Biological Chemistry, 2005, 280, 22124-22134.	1.6	36
44	Mucosal Adaptation to Enteral Nutrients is Dependent on the Physiologic Actions of Glucagon-Like Peptide-2 in Mice. Gastroenterology, 2005, 128, 1340-1353.	0.6	118
45	Lipid Raft-dependent Glucagon-like Peptide-2 Receptor Trafficking Occurs Independently of Agonist-induced Desensitization. Molecular Biology of the Cell, 2004, 15, 3673-3687.	0.9	36
46	Dual Regulation of Cell Proliferation and Survival via Activation of Glucagon-Like Peptide-2 Receptor Signaling. Journal of Nutrition, 2003, 133, 3708-3711.	1.3	23
47	Glucagon-like Peptide-2 Receptor Activation Engages Bad and Glycogen Synthase Kinase-3 in a Protein Kinase A-dependent Manner and Prevents Apoptosis following Inhibition of Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 2002, 277, 24896-24906.	1.6	74
48	Glucagon-like Peptide (GLP)-2 Action in the Murine Central Nervous System Is Enhanced by Elimination of GLP-1 Receptor Signaling. Journal of Biological Chemistry, 2001, 276, 21489-21499.	1.6	98