
Helen J Wearing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7103357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Appropriate Models for the Management of Infectious Diseases. PLoS Medicine, 2005, 2, e174.	3.9	407
2	Ecological and immunological determinants of dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11802-11807.	3.3	278
3	Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Journal of Theoretical Biology, 2014, 356, 174-191.	0.8	139
4	Estimating the Duration of Pertussis Immunity Using Epidemiological Signatures. PLoS Pathogens, 2009, 5, e1000647.	2.1	124
5	Long-Term and Seasonal Dynamics of Dengue in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e3003.	1.3	96
6	Incomplete Protection against Dengue Virus Type 2 Re-infection in Peru. PLoS Neglected Tropical Diseases, 2016, 10, e0004398.	1.3	85
7	Metabolic asymmetry and the global diversity of marine predators. Science, 2019, 363, .	6.0	81
8	Lateral Induction by Juxtacrine Signaling Is a New Mechanism for Pattern Formation. Developmental Biology, 2000, 217, 54-61.	0.9	64
9	Mathematical Modelling of Juxtacrine Patterning. Bulletin of Mathematical Biology, 2000, 62, 293-320.	0.9	59
10	Keratinocyte growth factor signalling: a mathematical model of dermal–epidermal interaction in epidermal wound healing. Mathematical Biosciences, 2000, 165, 41-62.	0.9	53
11	Two-species asymmetric competition: effects of age structure on intra- and interspecific interactions. Journal of Animal Ecology, 2007, 76, 83-93.	1.3	50
12	Tracking the dynamics of pathogen interactions: Modeling ecological and immune-mediated processes in a two-pathogen single-host system. Journal of Theoretical Biology, 2007, 245, 9-25.	0.8	42
13	Temperature impacts on dengue emergence in the United States: Investigating the role of seasonality and climate change. Epidemics, 2019, 28, 100344.	1.5	40
14	Persistence of Pathogens with Short Infectious Periods in Seasonal Tick Populations: The Relative Importance of Three Transmission Routes. PLoS ONE, 2010, 5, e11745.	1.1	39
15	Modeling Mosquito-Borne Disease Spread in U.S. Urbanized Areas: The Case of Dengue in Miami. PLoS ONE, 2016, 11, e0161365.	1.1	33
16	Chikungunya Viral Fitness Measures within the Vector and Subsequent Transmission Potential. PLoS ONE, 2014, 9, e110538.	1.1	32
17	Assessing the Potential of a Candidate Dengue Vaccine with Mathematical Modeling. PLoS Neglected Tropical Diseases, 2012, 6, e1450.	1.3	31
18	Antagonism between parasites within snail hosts impacts the transmission of human schistosomiasis. ELife, 2019, 8, .	2.8	29

HELEN J WEARING

#	Article	IF	CITATIONS
19	Stage-structured competition and the cyclic dynamics of host-parasitoid populations. Journal of Animal Ecology, 2004, 73, 706-722.	1.3	26
20	Age-structured vectorial capacity reveals timing, not magnitude of within-mosquito dynamics is critical for arbovirus fitness assessment. Parasites and Vectors, 2020, 13, 310.	1.0	23
21	Characterizing the likelihood of dengue emergence and detection in naÃ ⁻ ve populations. Parasites and Vectors, 2014, 7, 282.	1.0	20
22	The Dynamical Consequences of Developmental Variability and Demographic Stochasticity for Hostâ€Parasitoid Interactions. American Naturalist, 2004, 164, 543-558.	1.0	19
23	Bridging the Gap Between Experimental Data and Model Parameterization for Chikungunya Virus Transmission Predictions. Journal of Infectious Diseases, 2016, 214, S466-S470.	1.9	16
24	Nonlinear Analysis of Juxtacrine Patterns. SIAM Journal on Applied Mathematics, 2001, 62, 283-309.	0.8	15
25	Distinguishing viruses responsible for influenza-like illness. Journal of Theoretical Biology, 2022, 545, 111145.	0.8	14
26	Natural enemy specialization and the period of population cycles. Ecology Letters, 2003, 6, 381-384.	3.0	13
27	A koinobiont parasitoid mediates competition and generates additive mortality in healthy host populations. Oikos, 2005, 110, 620-628.	1.2	13
28	Probabilistic measures of persistence and extinction in measles (meta)populations. Ecology Letters, 2013, 16, 985-994.	3.0	13
29	Dengue and chikungunya: modelling the expansion of mosquito-borne viruses into naÃ ⁻ ve populations. Parasitology, 2016, 143, 860-873.	0.7	12
30	VILLAGE GROWTH, EMERGING INFECTIOUS DISEASE, AND THE END OF THE NEOLITHIC DEMOGRAPHIC TRANSITION IN THE SOUTHWEST UNITED STATES AND NORTHWEST MEXICO. American Antiquity, 2018, 83, 263-280.	0.6	9
31	Optimizing homeostatic cell renewal in hierarchical tissues. PLoS Computational Biology, 2018, 14, e1005967.	1.5	9
32	Evidence of cryptic incidence in childhood diseases. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171268.	1.2	8
33	Evolutionary consequences of feedbacks between within-host competition and disease control. Evolution, Medicine and Public Health, 2020, 2020, 30-34.	1.1	7
34	Modeling schistosomiasis transmission: the importance of snail population structure. Parasites and Vectors, 2021, 14, 94.	1.0	7
35	Conserved patterns of incomplete reporting in pre-vaccine era childhood diseases. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140886.	1.2	6
36	Streamlining physiologicallyâ€based pharmacokinetic model design for intravenous delivery of nanoparticle drugs. CPT: Pharmacometrics and Systems Pharmacology, 2022, , .	1.3	2

#	Article	IF	CITATIONS
37	Chapter Three. Understanding Host- Multipathogen Systems: Modeling the Interaction Between Ecology and Immunology. , 2010, , 48-70.		1
38	Mathematical Modeling of Pertussis Cocooning: The Effect of Prenatal Vaccination on Disease Dynamics. Open Forum Infectious Diseases, 2016, 3, .	0.4	0