Xuebing Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7103350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 2467-2475.	6.7	408
2	Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2006, 54, 2951-2962.	6.7	404
3	Allogeneic Mesenchymal Stem Cell Transplantation in Severe and Refractory Systemic Lupus Erythematosus: 4 Years of Experience. Cell Transplantation, 2013, 22, 2267-2277.	1.2	213
4	Transplantation of Human Bone Marrow Mesenchymal Stem Cell Ameliorates the Autoimmune Pathogenesis in MRL/lpr Mice. Cellular and Molecular Immunology, 2008, 5, 417-424.	4.8	173
5	The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cellular and Molecular Immunology, 2017, 14, 423-431.	4.8	167
6	Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut, 2012, 61, 468-469.	6.1	113
7	Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clinical Rheumatology, 2012, 31, 157-161.	1.0	104
8	Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clinical Rheumatology, 2014, 33, 1611-1619.	1.0	91
9	Inhibition of Aberrant Circulating Tfh Cell Proportions by Corticosteroids in Patients with Systemic Lupus Erythematosus. PLoS ONE, 2012, 7, e51982.	1.1	91
10	A CD8 T Cell/Indoleamine 2,3â€Đioxygenase Axis Is Required for Mesenchymal Stem Cell Suppression of Human Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2014, 66, 2234-2245.	2.9	86
11	A Long-Term Follow-Up Study of Allogeneic Mesenchymal Stem/Stromal Cell Transplantation in Patients with Drug-Resistant Systemic Lupus Erythematosus. Stem Cell Reports, 2018, 10, 933-941.	2.3	79
12	Efficacy of allogeneic mesenchymal stem cell transplantation in patients with drug-resistant polymyositis and dermatomyositis. Annals of the Rheumatic Diseases, 2011, 70, 1285-1288.	0.5	68
13	Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion: a long-term retrospective study. Stem Cell Research and Therapy, 2018, 9, 312.	2.4	66
14	Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Scientific Reports, 2015, 5, 12777.	1.6	65
15	ApoEâ^'/â^'Fasâ^'/â^' C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. Journal of Lipid Research, 2007, 48, 794-805.	2.0	62
16	Hypoxia-inducible factor 1 in autoimmune diseases. Cellular Immunology, 2016, 303, 7-15.	1.4	58
17	Mesenchymal stem cells promote CD206 expression and phagocytic activity of macrophages through IL-6 in systemic lupus erythematosus. Clinical Immunology, 2015, 161, 209-216.	1.4	50
18	MicroRNA-663 induces immune dysregulation by inhibiting TGF-Î ² 1 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cellular and Molecular Immunology, 2019, 16, 260-274.	4.8	50

XUEBING FENG

#	Article	IF	CITATIONS
19	Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study. Clinical and Experimental Medicine, 2017, 17, 333-340.	1.9	49
20	Leptin and Neutrophilâ€Activating Peptide 2 Promote Mesenchymal Stem Cell Senescence Through Activation of the Phosphatidylinositol 3â€Kinase/Akt Pathway in Patients With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2015, 67, 2383-2393.	2.9	48
21	Mesenchymal Stem Cells from Patients with Rheumatoid Arthritis Display Impaired Function in Inhibiting Th17 Cells. Journal of Immunology Research, 2015, 2015, 1-13.	0.9	45
22	Identification of interferon-inducible genes as diagnostic biomarker for systemic lupus erythematosus. Clinical Rheumatology, 2015, 34, 71-79.	1.0	43
23	Human Umbilical Cord Mesenchymal Stem Cells Inhibit T Follicular Helper Cell Expansion through the Activation of iNOS in Lupus-Prone B6.MRL- <i>Fas^{lpr}</i> Mice. Cell Transplantation, 2017, 26, 1031-1042.	1.2	43
24	Hypoxia Inducible Factor-1 Alpha Promotes Mesangial Cell Proliferation in Lupus Nephritis. American Journal of Nephrology, 2014, 40, 507-515.	1.4	42
25	Prognostic Indicators of Hospitalized Patients with Systemic Lupus Erythematosus: A Large Retrospective Multicenter Study in China. Journal of Rheumatology, 2011, 38, 1289-1295.	1.0	41
26	Double Allogenic Mesenchymal Stem Cells Transplantations Could Not Enhance Therapeutic Effect Compared with Single Transplantation in Systemic Lupus Erythematosus. Clinical and Developmental Immunology, 2012, 2012, 1-7.	3.3	40
27	Umbilical cord mesenchymal stem cells inhibit the differentiation of circulating T follicular helper cells in patients with primary Sjögren's syndrome through the secretion of indoleamine 2,3-dioxygenase. Rheumatology, 2015, 54, 332-342.	0.9	37
28	HLA-DRB1 Alleles as Genetic Risk Factors for the Development of Anti-MDA5 Antibodies in Patients with Dermatomyositis. Journal of Rheumatology, 2017, 44, 1389-1393.	1.0	37
29	Mesenchymal stem cells prevent podocyte injury in lupus-prone B6.MRL- <i>Faslpr</i> mice via polarizing macrophage into an anti-inflammatory phenotype. Nephrology Dialysis Transplantation, 2019, 34, 597-605.	0.4	37
30	Umbilical Cord-Derived Mesenchymal Stem Cells Suppress Autophagy of T Cells in Patients with Systemic Lupus Erythematosus via Transfer of Mitochondria. Stem Cells International, 2016, 2016, 1-13.	1.2	36
31	Increased expression of Bruton's tyrosine kinase in peripheral blood is associated with lupus nephritis. Clinical Rheumatology, 2018, 37, 43-49.	1.0	36
32	Restored Immunosuppressive Effect of Mesenchymal Stem Cells on B Cells After Olfactory 1/Early B Cell Factor–Associated Zincâ€Finger Protein Downâ€Regulation in Patients With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2014, 66, 3413-3423.	2.9	35
33	Umbilical Cord-Derived Mesenchymal Stem Cells Inhibit Cadherin-11 Expression by Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. Journal of Immunology Research, 2015, 2015, 1-10.	0.9	33
34	Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis. Arthritis Research and Therapy, 2017, 19, 165.	1.6	33
35	Mesenchymal Stem Cells Promote the Osteogenesis in Collagen-Induced Arthritic Mice through the Inhibition of TNF- <i>α</i> . Stem Cells International, 2018, 2018, 1-10.	1.2	31
36	Exacerbation of lupus nephritis by high sodium chloride related to activation of SGK1 pathway. International Immunopharmacology, 2015, 29, 568-573.	1.7	30

XUEBING FENG

#	Article	IF	CITATIONS
37	Genetic contribution to mesenchymal stem cell dysfunction in systemic lupus erythematosus. Stem Cell Research and Therapy, 2018, 9, 149.	2.4	30
38	Reduced Let-7f in Bone Marrow-Derived Mesenchymal Stem Cells Triggers Treg/Th17 Imbalance in Patients With Systemic Lupus Erythematosus. Frontiers in Immunology, 2020, 11, 233.	2.2	30
39	Association of TNF-αwith Impaired Migration Capacity of Mesenchymal Stem Cells in Patients with Systemic Lupus Erythematosus. Journal of Immunology Research, 2014, 2014, 1-14.	0.9	28
40	Serum IFN-Î ³ Predicts the Therapeutic Effect of Mesenchymal Stem Cells Transplantation in Systemic Lupus Erythematosus Patients. Stem Cells Translational Medicine, 2017, 6, 1777-1785.	1.6	27
41	Prognosis for Hospitalized Patients with Systemic Lupus Erythematosus in China: 5-Year Update of the Jiangsu Cohort. PLoS ONE, 2016, 11, e0168619.	1.1	22
42	Efficacy and safety of leflunomide treatment in Takayasu arteritis: Case series from the East China cohort. Seminars in Arthritis and Rheumatism, 2020, 50, 59-65.	1.6	19
43	Citrullinated fibrinogen impairs immunomodulatory function of bone marrow mesenchymal stem cells by triggering toll-like receptor. Clinical Immunology, 2018, 193, 38-45.	1.4	17
44	Thalidomide treatment in cutaneous lesions of systemic lupus erythematosus: a multicenter study in China. Clinical Rheumatology, 2016, 35, 1521-1527.	1.0	14
45	Severe thrombocytopenia in connective tissue diseases: a single-center review of 131 cases. Clinical Rheumatology, 2018, 37, 3337-3344.	1.0	14
46	Human SLE variant <i>NCF1</i> -R90H promotes kidney damage and murine lupus through enhanced Tfh2 responses induced by defective efferocytosis of macrophages. Annals of the Rheumatic Diseases, 2022, 81, 255-267.	0.5	14
47	Association of antimalarial drugs with decreased overall and cause specific mortality in systemic lupus erythematosus. Rheumatology, 2021, 60, 1774-1783.	0.9	12
48	Discriminating infectious meningitis versus neuropsychiatric involvement in patients with systemic lupus erythematosus: a single-center experience. Clinical Rheumatology, 2015, 34, 365-369.	1.0	10
49	Olf1/EBF associated zinc finger protein interfered with antinuclear antibody production in patients with systemic lupus erythematosus. Arthritis Research and Therapy, 2010, 12, R59.	1.6	8
50	Mesenchymal stem cells induced CD4+ T cell apoptosis in treatment of lupus mice. Biochemical and Biophysical Research Communications, 2018, 507, 30-35.	1.0	8
51	Association between Type I interferon and depletion and dysfunction of endothelial progenitor cells in C57BL/6 mice deficient in both apolipoprotein E and Fas ligand. Current Research in Translational Medicine, 2018, 66, 71-82.	1.2	8
52	Protective effects of antimalarials in Chinese patients with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2019, 78, e80-e80.	0.5	8
53	Decreased serum ACE2 levels in patients with connective tissue diseases. Rheumatology, 2021, 60, 4401-4406.	0.9	8
54	CTLA-4 SNPs (CT60A/G, -1722T/C, -1661G/A, and -318C/T) and Systemic Lupus Erythematosus: A Meta-Analysis. Critical Reviews in Fukarvotic Gene Expression, 2014, 24, 89-100	0.4	8

XUEBING FENG

#	Article	IF	CITATIONS
55	Elevated Apoptosis and Impaired Proliferation Contribute to Downregulated Peripheral <i>γĨ'</i> T Cells in Patients with Systemic Lupus Erythematosus. Clinical and Developmental Immunology, 2013, 2013, 1-9.	3.3	7
56	Association of anti-Ro52 autoantibodies with interstitial lung disease in connective tissue diseases. Annals of the Rheumatic Diseases, 2019, 80, annrheumdis-2019-216372.	0.5	7
57	Antiâ€Ro52 antibodies in clinical practice: A singleâ€centre experience. International Journal of Clinical Practice, 2021, 75, e13679.	0.8	6
58	Clinical and laboratorial outcome of different age-onset systemic lupus erythematosus patients in Jiangsu, China: a multicentre retrospective study. Scientific Reports, 2022, 12, .	1.6	6
59	Factors associated with event-free survival in Chinese patients with Takayasu's arteritis. Clinical Rheumatology, 2021, 40, 1941-1948.	1.0	5
60	Creatinine clearance rate predicts prognosis of patients with systemic lupus erythematosus: a large retrospective cohort study. Clinical Rheumatology, 2021, 40, 2221-2231.	1.0	5
61	Prediction of diagnosis results of rheumatoid arthritis patients based on autoantibodies and cost-sensitive neural network. Clinical Rheumatology, 2022, 41, 2329-2339.	1.0	4
62	The relationship of polluted air and drinking water sources with the prevalence of systemic lupus erythematosus: a provincial population-based study. Scientific Reports, 2021, 11, 18591.	1.6	3
63	Association of Autoantibody Quantification With Systemic Lupus Erythematosus Disease Activity: Comment on the Article by Kim et al. Arthritis and Rheumatology, 2019, 71, 1588-1590.	2.9	1
64	MSCs relieve SLE by modulation of Th17 cells through MMPs–CCL2–CCR2–ILâ€17 pathway. Rheumatology & Autoimmunity, 2021, 1, 30-39.	0.3	1
65	Low dosage use of cyclophosphamide improves the survival of patients with systemic lupus erythematosus. Clinical Rheumatology, 2022, , 1.	1.0	1
66	Impaired olfactory neural circuit in patients with SLE at early stages. Lupus, 2021, 30, 1078-1085.	0.8	0
67	Predictors of improvement in disease activity in first hospitalized patients with systemic lupus erythematosus: a multicenter retrospective study of a Chinese cohort. Clinical Rheumatology, 0, , .	1.0	0