Junjie Shen

List of Publications by Citations

Source: https://exaly.com/author-pdf/7103323/junjie-shen-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36
papers

16
h-index

29
g-index

37
ext. papers

1,226
ext. citations

8.4
avg, IF

L-index

#	Paper	IF	Citations
36	Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review. <i>Chemosphere</i> , 2014 , 117, 679-91	8.4	162
35	Capacitive Deionization of Saline Water by Using MoS-Graphene Hybrid Electrodes with High Volumetric Adsorption Capacity. <i>Environmental Science & Environmental Science & Env</i>	10.3	94
34	Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. <i>Science of the Total Environment</i> , 2015 , 527-528, 520-9	10.2	89
33	Efficient removal of metal ions by capacitive deionization with straw waste derived graphitic porous carbon nanosheets. <i>Environmental Science: Nano</i> , 2020 , 7, 317-326	7.1	42
32	Renewable energy powered membrane technology: Fluoride removal in a rural community in northern Tanzania. <i>Separation and Purification Technology</i> , 2015 , 149, 349-361	8.3	41
31	Renewable energy powered membrane technology: Case study of St. Dorcas borehole in Tanzania demonstrating fluoride removal via nanofiltration/reverse osmosis. <i>Separation and Purification Technology</i> , 2016 , 170, 445-452	8.3	40
30	Capacitive Removal of Heavy Metal Ions from Wastewater an Electro-Adsorption and Electro-Reaction Coupling Process. <i>Environmental Science & Electro-Reaction Coupling Process</i> . <i>Environmental Science & Electro-Reaction Coupling Process</i> . <i>Environmental Science & Electro-Reaction Coupling Process</i> .	10.3	40
29	Enhanced adsorption of cationic and anionic dyes from aqueous solutions by polyacid doped polyaniline. <i>Synthetic Metals</i> , 2018 , 245, 151-159	3.6	40
28	Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metalBrganic frameworks. <i>Environmental Science: Nano</i> , 2020 , 7, 926-937	7.1	39
27	Photoactive and metal-free polyamide-based polymers for water and wastewater treatment under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2016 , 193, 226-233	21.8	33
26	Effect of polyacid dopants on the performance of polyaniline membranes in organic solvent nanofiltration. <i>Separation and Purification Technology</i> , 2018 , 204, 336-344	8.3	29
25	Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method. <i>Chemosphere</i> , 2020 , 255, 126950	8.4	25
24	Seasonal variation of organic matter concentration and characteristics in the Maji ya Chai River (Tanzania): Impact on treatability by ultrafiltration. <i>Water Research</i> , 2016 , 101, 370-381	12.5	23
23	Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode. <i>Chemosphere</i> , 2016 , 159, 66-71	8.4	20
22	A wide range and high resolution one-filtration molecular weight cut-off method for aqueous based nanofiltration and ultrafiltration membranes. <i>Journal of Membrane Science</i> , 2017 , 525, 304-311	9.6	19
21	Selective Capacitive Removal of Heavy Metal Ions from Wastewater over Lewis Base Sites of S-Doped Fe-N-C Cathodes an Electro-Adsorption Process. <i>Environmental Science & Environmental Science & Envi</i>	10.3	16
20	Seasonal variation of organic matter characteristics and fluoride concentration in the Maji ya Chai River (Tanzania): Impact on treatability by nanofiltration/reverse osmosis. <i>Science of the Total Environment</i> , 2018 , 637-638, 1209-1220	10.2	16

(2022-2019)

19	Fe-, N-Embedded Hierarchically Porous Carbon Architectures Derived from FeTe-Trapped Zeolitic Imidazolate Frameworks as Efficient Oxygen Reduction Electrocatalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 19268-19276	8.3	15
18	Quantification of hormone-humic acid interactions in nanofiltration. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 10597-604	10.3	15
17	Exploiting the electrical conductivity of poly-acid doped polyaniline membranes with enhanced durability for organic solvent nanofiltration. <i>Journal of Membrane Science</i> , 2019 , 579, 11-21	9.6	14
16	Renewable energy powered membrane technology: Impact of pH and ionic strength on fluoride and natural organic matter removal. <i>Science of the Total Environment</i> , 2018 , 621, 138-147	10.2	14
15	Efficient defluoridation of water by Monetite nanorods. <i>Adsorption</i> , 2018 , 24, 135-145	2.6	12
14	Water E nergy Nexus Perspectives in the Context of Photovoltaic-Powered Decentralized Water Treatment Systems: A Tanzanian Case Study. <i>Energy Technology</i> , 2017 , 5, 1112-1123	3.5	9
13	Capacitive Removal of Fluoride Ions via Creating Multiple Capture Sites in a Modulatory Heterostructure. <i>Environmental Science & Environmental Scienc</i>	10.3	9
12	From pollutant removal to resource recovery: A bibliometric analysis of municipal wastewater research in Europe. <i>Chemosphere</i> , 2021 , 284, 131267	8.4	9
11	Renewable energy powered membrane technology: Experimental investigation of system performance with variable module size and fluctuating energy. <i>Separation and Purification Technology</i> , 2019 , 221, 64-73	8.3	8
10	Renewable energy-powered membrane technology in Tanzanian communities. <i>Npj Clean Water</i> , 2018 , 1,	11.2	8
9	Beneficial synergy of adsorptionIntercalationIonversion mechanisms in Nb2O5@nitrogen-doped carbon frameworks for promoted removal of metal ions via hybrid capacitive deionization. <i>Environmental Science: Nano</i> , 2021 , 8, 122-130	7.1	7
8	Fabrication of self-doped sulfonated polyaniline membranes with enhanced antifouling ability and improved solvent resistance. <i>Journal of Membrane Science</i> , 2021 , 620, 117712	9.6	6
7	Ligand and Solvent Selection for Enhanced Separation of Palladium Catalysts by Organic Solvent Nanofiltration. <i>Frontiers in Chemistry</i> , 2020 , 8, 375	5	5
6	Greenhouse gas emissions associated with urban water infrastructure: What we have learnt from Chinald practice. <i>Wiley Interdisciplinary Reviews: Water</i> , 2021 , 8, e1529	5.7	3
5	Determining stability of organic solvent nanofiltration membranes by cross-flow aging. <i>Separation and Purification Technology</i> , 2021 , 256, 117840	8.3	3
4	Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies. <i>Processes</i> , 2022 , 10, 1075	2.9	2
3	Visualizing the landscape and evolution of capacitive deionization by scientometric analysis. <i>Desalination</i> , 2022 , 527, 115562	10.3	1
2	Investigating the role of dissolved inorganic and organic carbon in fluoride removal by membrane capacitive deionization. <i>Desalination</i> , 2022 , 528, 115618	10.3	1

SELF-ASSEMBLY OF BISMUTH SELENIDE TWO-DIMENSIONAL SUPERSTRUCTURE FROM HEXAGONAL NANOSHEETS. Functional Materials Letters, **2011**, 04, 245-248

1.2