Lauren Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7103310/publications.pdf Version: 2024-02-01

LALIDEN CADTED

#	Article	IF	CITATIONS
1	Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell, 2021, 184, 169-183.e17.	13.5	580
2	De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370, 426-431.	6.0	464
3	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell, 2020, 183, 1367-1382.e17.	13.5	420
4	Global analysis of protein folding using massively parallel design, synthesis, and testing. Science, 2017, 357, 168-175.	6.0	392
5	De novo design of potent and selective mimics of IL-2 and IL-15. Nature, 2019, 565, 186-191.	13.7	362
6	Massively parallel de novo protein design for targeted therapeutics. Nature, 2017, 550, 74-79.	13.7	354
7	Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell, 2019, 176, 1420-1431.e17.	13.5	339
8	De novo protein design by deep network hallucination. Nature, 2021, 600, 547-552.	13.7	280
9	De novo design of a fluorescence-activating \hat{I}^2 -barrel. Nature, 2018, 561, 485-491.	13.7	269
10	Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature, 2021, 594, 253-258.	13.7	253
11	Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science, 2021, 374, 1621-1626.	6.0	232
12	Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 2021, 592, 623-628.	13.7	180
13	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	13.5	131
14	De novo design of a non-local β-sheet protein with high stability and accuracy. Nature Structural and Molecular Biology, 2018, 25, 1028-1034.	3.6	101
15	Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	68
16	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	5.8	68
17	A Computationally Designed Hemagglutinin Stem-Binding Protein Provides In Vivo Protection from Influenza Independent of a Host Immune Response. PLoS Pathogens, 2016, 12, e1005409.	2.1	49
18	Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host and Microbe, 2021, 29, 1151-1161.e5.	5.1	36

LAUREN CARTER

#	Article	IF	CITATIONS
19	Adjuvanting a subunit SARS-CoV-2 vaccine with clinically relevant adjuvants induces durable protection in mice. Npj Vaccines, 2022, 7, .	2.9	32
20	Incorporation of sensing modalities into de novo designed fluorescence-activating proteins. Nature Communications, 2021, 12, 856.	5.8	31
21	Computational design of a synthetic PD-1 agonist. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
22	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology, 2022, 7, .	5.6	28
23	Airway antibodies emerge according to COVID-19 severity and wane rapidly but reappear after SARS-CoV-2 vaccination. JCI Insight, 2021, 6, .	2.3	27
24	Thermodynamically coupled biosensors for detecting neutralizing antibodies against SARS-CoV-2 variants. Nature Biotechnology, 2022, 40, 1336-1340.	9.4	23
25	In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19. Scientific Reports, 2021, 11, 4290.	1.6	22
26	Characterizing protein G B1 orientation and its effect on immunoglobulin G antibody binding using XPS, ToF-SIMS, and quartz crystal microbalance with dissipation monitoring. Biointerphases, 2020, 15, 021002.	0.6	15
27	SARS-COV-2 spike binding to ACE2 in living cells monitored by TR-FRET. Cell Chemical Biology, 2022, 29, 74-83.e4.	2.5	13
28	Qualification of ELISA and neutralization methodologies to measure SARS-CoV-2 humoral immunity using human clinical samples. Journal of Immunological Methods, 2021, 499, 113160.	0.6	12
29	Fâ€domain valency determines outcome of signaling through the angiopoietin pathway. EMBO Reports, 2021, 22, e53471.	2.0	12
30	Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge. Cell Reports Medicine, 2022, 3, 100658.	3.3	12
31	Structure-based Design of JOC-x, a Conjugatable Tumor Tight Junction Opener to Enhance Cancer Therapy. Scientific Reports, 2019, 9, 6169.	1.6	9
32	High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells Science Immunology, 2021, , eabl5652.	5.6	6
33	Rapid and Sensitive Detection of Antigen from SARS-CoV-2 Variants of Concern by a Multivalent Minibinder-Functionalized Nanomechanical Sensor. Analytical Chemistry, 2022, 9 <u>4, 8105-8109.</u>	3.2	6