Qiuling Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7102805/publications.pdf

Version: 2024-02-01

188 papers 6,248 citations

50170 46 h-index 61 g-index

219 all docs

219 docs citations

times ranked

219

3902 citing authors

#	Article	IF	CITATIONS
1	Design, Synthesis, and Applications of <i>ortho</i> -Sulfur Substituted Arylphosphanes. CCS Chemistry, 2023, 5, 1353-1364.	4.6	4
2	Atom Recombination of Difluorocarbene Enables 3-Fluorinated Oxindoles from 2-Aminoarylketones. CCS Chemistry, 2022, 4, 1671-1679.	4.6	32
3	[4 + 1] Cyclization of benzohydrazide and ClCF2COONa towards 1,3,4-oxadiazoles and 1,3,4-oxadiazoles-d5. Chinese Chemical Letters, 2022, 33, 1511-1514.	4.8	19
4	An Olefinic 1, <scp>2â€<i>α</i>â€Boryl</scp> Migration Enables 1, <scp>2â€Bis</scp> (boronic esters) via <scp>Radicalâ€Polar</scp> Crossover Reaction. Chinese Journal of Chemistry, 2022, 40, 582-588.	2.6	18
5	Rh-Catalyzed diastereoselective addition of arylboronic acids to α-keto <i>N-tert</i> -butanesulfinyl aldimines: synthesis of α-amino ketones. Organic Chemistry Frontiers, 2022, 9, 1016-1022.	2.3	3
6	Chemoselective reduction of \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones to allylic alcohols under catalyst-free conditions. Organic Chemistry Frontiers, 2022, 9, 1109-1114.	2.3	5
7	Engineering of the alkyl chain branching point on a lactone polymer donor yields 17.81% efficiency. Journal of Materials Chemistry A, 2022, 10, 3314-3320.	5.2	17
8	Deconstrutive Difunctionalizations of Cyclic Ethers Enabled by Difluorocarbene to Access Difluoromethyl Ethers. CCS Chemistry, 2022, 4, 3820-3831.	4.6	15
9	Difluorocarbene-enabled access to 1,3-oxazin-6-ones from enamides. Organic Chemistry Frontiers, 2022, 9, 1282-1287.	2.3	8
10	Ni-Catalyzed Radical-Promoted Defluoroalkylborylation of Trifluoromethyl Alkenes To Access <i>gem</i> -Difluorohomoallylic Boronates. Organic Letters, 2022, 24, 2446-2451.	2.4	29
11	Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nature Communications, 2022, 13, 1784.	5.8	11
12	Recent Advances in the Construction of Fluorinated Organoboron Compounds. Jacs Au, 2022, 2, 261-279.	3.6	13
13	Construction and transformations of 2,2-difluoro-2,3-dihydrofurans from enaminones and diflurocarbene. Organic Chemistry Frontiers, 2022, 9, 3000-3005.	2.3	23
14	Design, synthesis, and applications of stereospecific 1,3-diene carbonyls. Science China Chemistry, 2022, 65, 912-917.	4.2	1
15	Recent Progress on 1,2-Metallate Shift Reactions Based on Tetracoordinate Boron Intermediates. Chinese Journal of Organic Chemistry, 2022, 42, 1013.	0.6	13
16	A Fruitful Decade of Organofluorine Chemistry: New Reagents and Reactions. CCS Chemistry, 2022, 4, 2518-2549.	4.6	93
17	Synthesis of \hat{l} ±-Aminosilanes by 1,2-Metalate Rearrangement Deoxygenative Silylation of Aromatic Amides. Organic Letters, 2022, 24, 3249-3253.	2.4	7
18	Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B–H bond insertion reaction. Nature Communications, 2022, 13, 2624.	5.8	15

#	Article	IF	Citations
19	Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes. Nature Communications, 2022, 13 , .	5.8	17
20	Elementalâ€Sulfurâ€Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from βâ€CF 3 â€1,3â€Enynes. Angewandte Chemie, 2021, 133, 894-901.	1.6	3
21	Elementalâ€Sulfurâ€Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from βâ€CF ₃ â€1,3â€Enynes. Angewandte Chemie - International Edition, 2021, 60, 881-888.	7.2	30
22	Passerini-type reaction of boronic acids enables \hat{l}_{\pm} -hydroxyketones synthesis. Nature Communications, 2021, 12, 441.	5.8	32
23	Rapid incorporation of a difluoroacetate radical into <i>para</i> -quinone methides <i>via</i> radical 1,6-conjugate addition. Chemical Communications, 2021, 57, 6035-6038.	2.2	13
24	Catalytic Atroposelective Catellani Reaction Enables Construction of Axially Chiral Biaryl Monophosphine Oxides. CCS Chemistry, 2021, 3, 377-387.	4.6	37
25	Pd-Catalyzed Assembly of Fluoren-9-ones by Merging of C–H Activation and Difluorocarbene Transfer. Organic Letters, 2021, 23, 2543-2547.	2.4	34
26	Diethylzinc-Mediated Radical 1,2-Addition of Alkenes and Alkynes. Organic Letters, 2021, 23, 2994-2999.	2.4	24
27	Biomimetic Carbene Cascades Enabled Imine Derivative Migration from Carbene <i>-</i> Thiocarbamates. Organic Letters, 2021, 23, 3518-3523.	2.4	4
28	Tetracoordinate Boron Intermediates Enable Unconventional Transformations. Accounts of Chemical Research, 2021, 54, 2298-2312.	7.6	81
29	Photoinduced <scp>Nalâ€Promoted</scp> Radical Borylation of Alkyl Halides and Pseudohalides. Chinese Journal of Chemistry, 2021, 39, 1825-1830.	2.6	14
30	Ni-Catalyzed Reductive Allylation of \hat{l}_{\pm} -Chloroboronates to Access Homoallylic Boronates. Organic Letters, 2021, 23, 4564-4569.	2.4	23
31	Construction of Axially Chiral Arylborons via Atroposelective Miyaura Borylation. Journal of the American Chemical Society, 2021, 143, 10048-10053.	6.6	48
32	<scp>Cuâ€Catalyzed</scp> Chemoselective Reduction of <scp><i>N</i>â€Heteroaromatics</scp> with <scp>NH₃</scp> in Aqueous Solution. Chinese Journal of Chemistry, 2021, 39, 2504-2508.	2.6	13
33	Solvent-Dependent Cyclization of 2-Alkynylanilines and ClCF ₂ COONa for the Divergent Assembly of <i>N</i> -(Quinolin-2-yl)amides and Quinolin-2(1 <i>H</i>)-ones. Organic Letters, 2021, 23, 5599-5604.	2.4	17
34	C-F bond activation under transition-metal-free conditions. Science China Chemistry, 2021, 64, 1630-1659.	4.2	85
35	Pyridinium-catalyzed decarboxylative borylation of benzoyl peroxides. Green Synthesis and Catalysis, 2021, 2, 299-302.	3.7	16
36	Modular Synthesis of Polysubstituted Quinolin-3-amines by Oxidative Cyclization of 2-(2-Isocyanophenyl)acetonitriles with Organoboron Reagents. Organic Letters, 2021, 23, 6789-6794.	2.4	14

#	Article	IF	CITATIONS
37	Difluorocarbene enables to access 2-fluoroindoles from ortho-vinylanilines. Nature Communications, 2021, 12, 4986.	5.8	32
38	Enantioselective Cobalt-Catalyzed Cascade Hydrosilylation and Hydroboration of Alkynes to Access Enantioenriched 1,1-Silylboryl Alkanes. Journal of the American Chemical Society, 2021, 143, 13124-13134.	6.6	44
39	Photoinduced Decarboxylative Phosphorothiolation of <i>N</i> -Hydroxyphthalimide Esters. Organic Letters, 2021, 23, 6729-6734.	2.4	26
40	Direct Asymmetric Vinylogous Mannich Reactions of Acyclic $\langle i \rangle \hat{l} \pm \langle i \rangle, \langle i \rangle \hat{l}^2 \langle i \rangle$ -Unsaturated Ketones Catalyzed by Chiral Boranes. Chinese Journal of Organic Chemistry, 2021, 41, 1753.	0.6	1
41	Preparation of anthranils <i>via</i> chemoselective oxidative radical cyclization of 3-(2-azidoaryl) substituted propargyl alcohols. Chemical Communications, 2021, 57, 2037-2040.	2.2	3
42	Photo-induced weak base-catalyzed synthesis of \hat{l}_{\pm} -haloboronates from vinylboronates and polyfluoroalkyl halides. Organic Chemistry Frontiers, 2021, 8, 1991-1996.	2.3	20
43	Copper-catalyzed 1,6-conjugate addition of <i>para</i> -quinone methides with diborylmethane. Organic Chemistry Frontiers, 2021, 8, 4543-4548.	2.3	14
44	Palladium-catalyzed three-component synthesis of phosphine-containing tetrasubstituted acyclic unsymmetric all-carbon olefins. Cell Reports Physical Science, 2021, , 100629.	2.8	2
45	Double Capture of Difluorocarbene by 2-Aminostyrenes Enables the Construction of 3-(2,2-Difluoroethyl)-2-fluoroindoles. Organic Letters, 2021, 23, 7781-7786.	2.4	27
46	Regioselective Cross-Coupling of Isatogens with Boronic Acids to Construct 2,2-Disubstituted Indolin-3-one Derivatives. Organic Letters, 2021, 23, 7776-7780.	2.4	8
47	N ₂ H ₄ â€"H ₂ O Enabled Umpolung Cyclization of <i>>0</i> >-Nitro Chalcones for the Construction of Quinoline <i>N</i> >-Oxides. Organic Letters, 2021, 23, 595-600.	2.4	11
48	Synthesis of CF ₂ Hâ€Containing Oxime Ethers Derivatives from ClCF ₂ H, <i>tert</i> à€Butyl Nitrile and Indoles. Chinese Journal of Chemistry, 2020, 38, 63-68.	2.6	16
49	Palladium-catalyzed Câ \in "H bond activation for the assembly of <i>N</i> -aryl carbazoles with aromatic amines as nitrogen sources. Chemical Communications, 2020, 56, 1665-1668.	2.2	23
50	Cu-catalyzed C–N bond cleavage of 3-aminoindazoles for the C–H arylation of enamines. Organic Chemistry Frontiers, 2020, 7, 25-29.	2.3	16
51	Precise Construction of SCF ₂ H or SeCF ₂ H Groups on Heteroarenes Generated <i>in Situ</i> from CF ₃ -Containing 1,3-Enynes. Organic Letters, 2020, 22, 615-619.	2.4	53
52	Chiral BrÃ, nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie, 2020, 132, 3320-3325.	1.6	8
53	Chiral Brønsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie - International Edition, 2020, 59, 3294-3299.	7.2	37
54	Cu-Catalyzed $\langle i \rangle \circ \langle i \rangle$ -Amino Benzofuranthioether Formation from $\langle i \rangle N \langle i \rangle$ -Tosylhydrazone-Bearing Thiocarbamates and Arylative Electrophiles. Organic Letters, 2020, 22, 7874-7878.	2.4	10

#	Article	IF	CITATIONS
55	Cu-Catalyzed Regio- and Stereodivergent Chemoselective sp/sp 1,3- and 1,4-Diborylations of CF3-Containing 1,3-Enynes. CheM, 2020, 6, 2347-2363.	5.8	55
56	Palladiumâ€Catalyzed Desulfurative Amide Formation from Thioureas and Arylboronic Acids. ChemCatChem, 2020, 12, 5664-5668.	1.8	7
57	Deconstructive Functionalizations of Unstrained Carbon–Nitrogen Cleavage Enabled by Difluorocarbene. ACS Central Science, 2020, 6, 1819-1826.	5.3	64
58	Transition-Metal-free Double-Insertive Coupling of Isocyanides with Arylboronic Acids Enabled Diarylmethanamines. Cell Reports Physical Science, 2020, 1, 100268.	2.8	13
59	Recent progress on selective deconstructive modes of halodifluoromethyl and trifluoromethyl-containing reagents. Chemical Society Reviews, 2020, 49, 9197-9219.	18.7	156
60	Base-promoted domino-borylation-protodeboronation strategy. Chemical Communications, 2020, 56, 6469-6479.	2.2	36
61	Synthesis of Thiazoles and Isothiazoles via Three-Component Reaction of Enaminoesters, Sulfur, and Bromodifluoroacetamides/Esters. Organic Letters, 2020, 22, 5284-5288.	2.4	54
62	Radical-Induced 1,2-Boron Shift, Enabling 1,3-Difunctionalization of Allylboronic Esters. CheM, 2020, 6, 330-331.	5.8	5
63	Michael Reaction Inspired Atroposelective Construction of Axially Chiral Biaryls. Journal of the American Chemical Society, 2020, 142, 7322-7327.	6.6	57
64	[3+1+1] type cyclization of ClCF ₂ COONa for the assembly of imidazoles and tetrazoles <i>via in situ</i> generated isocyanides. Chemical Communications, 2020, 56, 6106-6109.	2.2	18
65	Palladium-catalyzed cyanation of aryl halides with <i>in situ</i> generated CN ^{â^'} from ClCF ₂ H and NaNH ₂ . Organic Chemistry Frontiers, 2020, 7, 2950-2954.	2.3	22
66	Enantio- and diastereoselective diarylmethylation of 1,3-dicarbonyl compounds. Chemical Science, 2020, 11, 5969-5973.	3.7	13
67	Oxidant-controlled divergent transformations of 3-aminoindazoles for the synthesis of pyrimido[1,2- <i>b</i>]-indazoles and aromatic nitrile-derived dithioacetals. Organic Chemistry Frontiers, 2019, 6, 3355-3359.	2.3	23
68	Facile synthesis of 1,2-thiobenzonitriles <i>via</i> Cu-catalyzed denitrogenative radical coupling reaction. Chemical Communications, 2019, 55, 10265-10268.	2.2	17
69	Cu-Catalyzed Denitrogenative Transannulation of 3-Aminoindazoles To Assemble 1-Aminoisoquinolines and 3-Aminobenzothiophenes. Organic Letters, 2019, 21, 8869-8873.	2.4	26
70	Chlorodifluoromethane as a C1 Synthon in the Assembly of N-Containing Compounds. IScience, 2019, 19, 1-13.	1.9	38
71	Stereospecific 1,4â€Metallate Shift Enables Stereoconvergent Synthesis of Ketoximes. Angewandte Chemie, 2019, 131, 13555-13560.	1.6	4
72	Metal-free cyclization of unsaturated hydrazones for the divergent assembly of pyrazolones and pyrazolines. Chemical Communications, 2019, 55, 8943-8946.	2.2	26

#	Article	IF	Citations
73	Synthesis of anti-vicinal diboronates from diarylethynes and B2pin2. Science Bulletin, 2019, 64, 1685-1690.	4.3	15
74	<i>tert</i> -Butyl Nitrite Mediated Synthesis of Fluorinated <i>O</i> -Alkyloxime Ether Derivatives. Organic Letters, 2019, 21, 7375-7379.	2.4	13
75	Cu-Catalyzed Aromatic Metamorphosis of 3-Aminoindazoles. Organic Letters, 2019, 21, 7630-7634.	2.4	17
76	Radical Promoted C(sp ²)–S Formation and C(sp ³)–S Bond Cleavage: Access to 2-Substituted Thiochromones. Organic Letters, 2019, 21, 1112-1115.	2.4	42
77	Stereospecific 1,4â€Metallate Shift Enables Stereoconvergent Synthesis of Ketoximes. Angewandte Chemie - International Edition, 2019, 58, 13421-13426.	7.2	28
78	Synthesis of Furoxans and Isoxazoles via Divergent $[2+1+1+1]$ Annulations of Sulfoxonium Ylides and $\langle \sup > t < \sup > BuONO$. Organic Letters, 2019, 21, 5273-5276.	2.4	40
79	3â€Aminoindole Synthesis from 2â€Nitrochalcones and Ammonia or Primary Amines. Advanced Synthesis and Catalysis, 2019, 361, 3718-3722.	2.1	14
80	Transition metal-free assembly of 1,3,5-triazines using ethyl bromodifluoroacetate as C1 source. Chemical Communications, 2019, 55, 8079-8082.	2.2	31
81	S ₈ -Catalyzed triple cleavage of bromodifluoro compounds for the assembly of N-containing heterocycles. Chemical Science, 2019, 10, 6828-6833.	3.7	51
82	Mechanism of BrÃ,nsted-Base-Mediated Borylation of Propynols: A DFT Study. Organic Letters, 2019, 21, 4924-4928.	2.4	19
83	Difluoromethylation of Tosylhydrazone Compounds with Chlorodifluoromethane under Mild Conditions. Asian Journal of Organic Chemistry, 2019, 8, 694-697.	1.3	14
84	Palladium-catalyzed Suzuki-Miyaura coupling of thioureas or thioamides. Nature Communications, 2019, 10, 5709.	5.8	37
85	Base-catalyzed diborylation of alkynes: synthesis and applications of cis-1,2-bis(boryl)alkenes. Science China Chemistry, 2019, 62, 62-66.	4.2	28
86	Gold-Catalyzed Radical-Involved Intramolecular Cyclization of Internal N-Propargylamides for the Construction of 5-Oxazole Ketones. Journal of Organic Chemistry, 2019, 84, 401-408.	1.7	29
87	Radical Promoted Annulation of Alkynones for the Construction of 2,3-Disubstituted Thiochromones. Acta Chimica Sinica, 2019, 77, 932.	0.5	6
88	Photoredox-catalyzed cascade annulation of methyl(2-(phenylethynyl)phenyl)sulfanes and methyl(2-(phenylethynyl)phenyl)selanes with sulfonyl chlorides: synthesis of benzothiophenes and benzoselenophenes. Organic Chemistry Frontiers, 2018, 5, 1483-1487.	2.3	51
89	Rh(<scp>ii</scp>)/phosphine-cocatalyzed synthesis of dithioketal derivatives from diazo compounds through simultaneous construction of two different Câ€"S bonds. Chemical Communications, 2018, 54, 5964-5967.	2.2	31
90	Thiocarbamate-Directed Tandem Olefination–Intramolecular Sulfuration of Two <i>Ortho</i> C–H Bonds: Application to Synthesis of a COX-2 Inhibitor. Organic Letters, 2018, 20, 1162-1166.	2.4	35

#	Article	IF	CITATIONS
91	Copper-Catalyzed Radical Difluoroalkylation and Redox Annulation of Nitroalkynes for the Construction of C2-Tetrasubstituted Indolin-3-ones. Organic Letters, 2018, 20, 393-396.	2.4	67
92	Photoredox-Catalyzed Decarboxylative Alkylation of Silyl Enol Ethers To Synthesize Functionalized Aryl Alkyl Ketones. Organic Letters, 2018, 20, 349-352.	2.4	82
93	Copper/Diboronâ€Mediated Intramolecular Oxygenation and Allylation/Benzylation of Nitroalkynes for the Synthesis of C2â€Quaternary Indolinâ€3â€ones. Chemistry - an Asian Journal, 2018, 13, 2511-2515.	1.7	9
94	Lewisâ€acid Promoted Chemoselective Condensation of 2â€Aminobenzimidazoles or 3â€Aminoindazoles with 3â€Ethoxycyclobutanones to Construct Fused Nitrogen heterocycles. Advanced Synthesis and Catalysis, 2018, 360, 1943-1948.	2.1	41
95	Synthesis of fused benzimidazoles <i>via</i> successive nucleophilic additions of benzimidazole derivatives to arynes under transition metal-free conditions. Organic Chemistry Frontiers, 2018, 5, 1639-1642.	2.3	12
96	Cu/Pd cooperatively catalyzed tandem intramolecular anti-Markovnikov hydroarylation of unsaturated amides: facile construction of 3,4-dihydroquinolinones <i>via</i> borylation/intramolecular C(sp ³)–C(sp ²) cross coupling. Chemical Communications, 2018, 54, 34-37.	2.2	39
97	Expedient chemoselective and catalyst-free synthesis of 3,3-difluorochroman-4-ones from o-hydroxyarylenaminones and Selectfluor. Chinese Chemical Letters, 2018, 29, 963-966.	4.8	22
98	Reductive <i>N</i> -alkylation of primary and secondary amines using carboxylic acids and borazane under mild conditions. Organic Chemistry Frontiers, 2018, 5, 3510-3514.	2.3	24
99	Oxidative Rearrangement of 3-Aminoindazoles for the Construction of 1,2,3-Benzotriazine-4(3 <i>H</i>)-ones at Ambient Temperature. Organic Letters, 2018, 20, 6494-6497.	2.4	18
100	Cu-Catalyzed Denitrogenative Ring-Opening of 3-Aminoindazoles for the Synthesis of Aromatic Nitrile-Containing (Hetero)Arenes. Organic Letters, 2018, 20, 6161-6165.	2.4	28
101	Halodifluoroacetates as formylation reagents for various amines <i>via</i> unprecedented quadruple cleavage. Organic Chemistry Frontiers, 2018, 5, 3505-3509.	2.3	51
102	Oxidative ring-opening of 3-aminoindazoles for the synthesis of 2-aminobenzoates. Organic Chemistry Frontiers, 2018, 5, 3245-3249.	2.3	15
103	A facile synthesis of diverse 5-arylated triazoles <i>via</i> a Cu-catalyzed oxidative interrupted click reaction with arylboronic acids in air. Organic Chemistry Frontiers, 2018, 5, 2463-2467.	2.3	21
104	Divergent synthesis of α-aryl ketones/esters <i>via</i> rhodium-catalyzed selective deesterification and decarbonylation of diazo compounds. Organic Chemistry Frontiers, 2018, 5, 2583-2587.	2.3	21
105	Synthesis of \hat{l}^2 -Aminoenones via Cross-Coupling of In-Situ-Generated Isocyanides with 1,3-Dicarbonyl Compounds. Organic Letters, 2018, 20, 4777-4781.	2.4	50
106	Diversity-oriented synthesis of imidazo[2,1- <i>a</i>]isoquinolines. Chemical Communications, 2018, 54, 10240-10243.	2.2	64
107	Four-coordinate triarylborane synthesis <i>via</i> cascade B–Cl/C–B cross-metathesis and C–H bond borylation. Chemical Science, 2018, 9, 7666-7672.	3.7	29
108	Base-Catalyzed Borylation/B–O Elimination of Propynols and B ₂ pin ₂ Delivering Tetrasubstituted Alkenylboronates. Organic Letters, 2018, 20, 5153-5157.	2.4	39

#	Article	IF	CITATIONS
109	Copper-Catalyzed Intermolecular Reductive Radical Difluoroalkylation–Thiolation of Aryl Alkenes. Organic Letters, 2018, 20, 4975-4978.	2.4	60
110	Functionalized geminal-diborylalkanes from various electron-deficient alkynes and B ₂ pin ₂ . Organic Chemistry Frontiers, 2018, 5, 2249-2253.	2.3	38
111	Dual role of ethyl bromodifluoroacetate in the formation of fluorine-containing heteroaromatic compounds. Chemical Communications, 2018, 54, 8960-8963.	2.2	60
112	N—H and O—H Difluoromethylation of <i>N</i> -Heterocycles. Acta Chimica Sinica, 2018, 76, 972.	0.5	22
113	Copperâ€Catalyzed 1,6â€Hydrodifluoroacetylation of <i>para</i> å€Quinone Methides at Ambient Temperature with Bis(pinacolato)diboron as Reductant. Advanced Synthesis and Catalysis, 2017, 359, 384-389.	2.1	87
114	Anti-inflammatory activity of $3\hat{l}^2$ -hydroxycholest-5-en-7-one isolated from Hippocampus trimaculatus leach via inhibiting iNOS, TNF- $\hat{l}\pm$, and 1L- $1\hat{l}^2$ of LPS induced RAW 264.7 macrophage cells. Food and Function, 2017, 8, 788-795.	2.1	13
115	Lewis Acidâ€Mediated [3+3] Annulation for the Construction of Substituted Pyrimidine and Pyridine Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 952-958.	2.1	39
116	Silver-Catalyzed Radical-Involved Cascade Cyclization of Diphenylphosphine with Cinnamamides: Access to 2-Phosphinoyl-3 <i>H</i> -pyrrolo[1,2- <i>a</i>)lindoles. Organic Letters, 2017, 19, 980-983.	2.4	61
117	Synthesis of fully-substituted 1,2,3-triazoles via copper(<scp>i</scp>)-catalyzed three-component coupling of sulfoximines, alkynes and azides. Organic Chemistry Frontiers, 2017, 4, 938-942.	2.3	29
118	Pd-Catalyzed 1,2-diarylation of vinylarenes at ambient temperature. Organic Chemistry Frontiers, 2017, 4, 1224-1228.	2.3	30
119	Umpolung of protons from H ₂ O: a metal-free chemoselective reduction of carbonyl compounds via B ₂ pin ₂ /H ₂ O systems. Organic and Biomolecular Chemistry, 2017, 15, 5140-5144.	1.5	35
120	Divergent Synthesis of Disulfanes and Benzenesulfonothioates Bearing 2â€Aminofurans From Nâ€Tosylhydrazoneâ€Bearing Thiocarbamates. Angewandte Chemie - International Edition, 2017, 56, 7952-7957.	7.2	48
121	Pd-Catalyzed Regioselective 1,2-Difunctionalization of Vinylarenes with Alkenyl Triflates and Aryl Boronic Acids at Ambient Temperature. Organic Letters, 2017, 19, 2702-2705.	2.4	35
122	An expedient E-stereoselective synthesis of multi-substituted functionalized allylic boronates from Morita–Baylis–Hillman alcohols. Organic Chemistry Frontiers, 2017, 4, 1220-1223.	2.3	8
123	Divergent Synthesis of Disulfanes and Benzenesulfonothioates Bearing 2â€Aminofurans From Nâ€₹osylhydrazoneâ€Bearing Thiocarbamates. Angewandte Chemie, 2017, 129, 8060-8065.	1.6	6
124	Base-controlled highly selective synthesis of alkyl 1,2-bis(boronates) or 1,1,2-tris(boronates) from terminal alkynes. Green Chemistry, 2017, 19, 3997-4001.	4.6	79
125	Aerobic oxidative decyanation–amidation of arylacetonitriles with urea as a nitrogen source. Organic Chemistry Frontiers, 2017, 4, 331-334.	2.3	14
126	Copper/B ₂ pin ₂ -catalyzed Câ€"H difluoroacetylationâ€"cycloamidation of anilines leading to the formation of 3,3-difluoro-2-oxindoles. Chemical Communications, 2017, 53, 2222-2225.	2.2	87

#	Article	IF	CITATIONS
127	An expedient and novel strategy for reductive amination by employing H ₂ O as both a hydrogen source and solvent <i>via</i> B ₂ (OH) ₄ /H ₂ O systems. Organic Chemistry Frontiers, 2017, 4, 2291-2295.	2.3	23
128	Merging gold catalysis, organocatalytic oxidation, and Lewis acid catalysis for chemodivergent synthesis of functionalized oxazoles from N-propargylamides. Chemical Communications, 2017, 53, 10366-10369.	2.2	37
129	Cu-Catalyzed Synthesis of 3-Formyl Imidazo[1,2- <i>a</i>)pyridines and Imidazo[1,2- <i>a</i>)pyrimidines by Employing Ethyl Tertiary Amines as Carbon Sources. Organic Letters, 2017, 19, 4726-4729.	2.4	56
130	Gold(<scp>i</scp>)-catalyzed synthesis of 2-substituted indoles from 2-alkynylnitroarenes with diboron as reductant. Organic and Biomolecular Chemistry, 2017, 15, 8354-8360.	1.5	12
131	Synthesis of 3-(Arylsulfonyl)benzothiophenes and Benzoselenophenes via TBHP-Initiated Radical Cyclization of 2-Alkynylthioanisoles or -selenoanisoles with Sulfinic Acids. Organic Letters, 2017, 19, 6292-6295.	2.4	77
132	Co-catalyzed highly selective C(sp ³)–H nitration. Chemical Communications, 2017, 53, 8972-8975.	2.2	35
133	Visible-light-induced thiotrifluoromethylation of terminal alkenes with sodium triflinate and benzenesulfonothioates. Chemical Communications, 2017, 53, 8968-8971.	2.2	63
134	Copper(I)-Catalyzed Chemoselective Reduction of Benzofuran-2-yl Ketones to Alcohols with B ₂ pin ₂ via a Domino-Borylation-Protodeboronation Strategy. Journal of Organic Chemistry, 2017, 82, 7602-7607.	1.7	14
135	Cleavage of the Carbon–Carbon Triple Bonds of Arylacetylenes for the Synthesis of Arylnitriles without a Metal Catalyst. European Journal of Organic Chemistry, 2016, 2016, 3056-3059.	1.2	35
136	Copper-Catalyzed C(sp2)–H Difluoroalkylation of Aldehyde Derived Hydrazones with Diboron as Reductant. Journal of Organic Chemistry, 2016, 81, 3654-3664.	1.7	82
137	$\langle i \rangle Z \langle i \rangle$ -Selective Synthesis of \hat{I}^3 , \hat{I} -Unsaturated Ketones via Pd-Catalyzed Ring Opening of 2-Alkylenecyclobutanones with Arylboronic Acids. Organic Letters, 2016, 18, 4000-4003.	2.4	24
138	Diborane-Mediated Deoxygenation of <i>o</i> -Nitrostyrenes To Form Indoles. Organic Letters, 2016, 18, 4088-4091.	2.4	72
139	Diboron-Assisted Palladium-Catalyzed Transfer Hydrogenation of <i>N</i> Heteroaromatics with Water as Hydrogen Donor and Solvent. Organic Letters, 2016, 18, 4250-4253.	2.4	101
140	Fe-Catalyzed Aerobic Oxidative C–CN Bond Cleavage of Arylacetonitriles Leading to Various Esters. Journal of Organic Chemistry, 2016, 81, 8436-8443.	1.7	24
141	Chemoselective acylation of benzimidazoles with phenylacetic acids under different Cu catalysts to give fused five-membered N-heterocycles or tertiary amides. Organic and Biomolecular Chemistry, 2016, 14, 8685-8690.	1.5	13
142	Palladium-Catalyzed Nitration of Meyer–Schuster Intermediates with tBuONO as Nitrogen Source at Ambient Temperature. Organic Letters, 2016, 18, 3702-3705.	2.4	43
143	Pd-Catalyzed Regioselective Arylboration of Vinylarenes. Organic Letters, 2016, 18, 5460-5463.	2.4	57
144	Cu-catalyzed hydrofluoroacetylation of alkynes or alkynyl carboxylic acids leading highly stereoselectively to fluoroacetylated alkenes. Organic Chemistry Frontiers, 2016, 3, 150-155.	2.3	68

#	Article	IF	Citations
145	Substituent-Controlled Chemoselective Cleavage of $\hat{Ca} \cdot C$ or $C \cdot \text{sub} \cdot \text{sp} \cdot \text{sup} \cdot 2 \cdot /\text{sup} \cdot \hat{a} \in C(CO)$ Bond in $\hat{I} \cdot \hat{I}^2$ -Unsaturated Carbonyl Compounds with H-Phosphonates Leading to \hat{I}^2 -Ketophosphonates. Journal of Organic Chemistry, 2016, 81, 2027-2034.	1.7	55
146	Palladium-Catalyzed Arylboration of Bicyclic Alkenes. Journal of Organic Chemistry, 2016, 81, 1000-1005.	1.7	50
147	Transition-metal-free regioselective synthesis of alkylboronates from arylacetylenes and vinyl arenes. Green Chemistry, 2016, 18, 932-936.	4.6	60
148	Copper-catalyzed tandem A ³ -couplingâ€"isomerizationâ€"hydrolysis reactions of aldehydes and terminal alkynes leading to chalcones. Organic Chemistry Frontiers, 2016, 3, 294-297.	2.3	29
149	Chemoselective catalytic reduction of conjugated $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones to saturated ketones via a hydroboration/protodeboronation strategy. Organic Chemistry Frontiers, 2016, 3, 14-18.	2.3	50
150	Radical Promoted Difunctionalization of Unsaturated Carbon-Carbon Bonds in the Presence of Dioxygen. Chinese Journal of Organic Chemistry, 2016, 36, 1151.	0.6	30
151	Cu/Feâ€Cocatalyzed Formation of βâ€Ketophosphonates by a Domino Knoevenagel–Decarboxylation–Oxyphosphorylation Sequence from Aromatic Aldehydes and Hâ€Phosphonates. Chemistry - A European Journal, 2015, 21, 10654-10659.	1.7	41
152	Molecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles. Beilstein Journal of Organic Chemistry, 2015, 11, 2158-2165.	1.3	11
153	\hat{l}^2 -Ketophosphonates formation via deesterification or deamidation of cinnamyl/alkynyl carboxylates or amides with H-phosphonates. RSC Advances, 2015, 5, 103977-103981.	1.7	32
154	Fe-Catalyzed Double Cross-Dehydrogenative Coupling of 1,3-Dicarbonyl Compounds and Arylmethanes. Organic Letters, 2015, 17, 548-551.	2.4	51
155	Cu-Catalyzed Aerobic Oxidative Esterification of Acetophenones with Alcohols to \hat{l}_{\pm} -Ketoesters. Organic Letters, 2015, 17, 516-519.	2.4	56
156	Palladium-catalyzed aerobic oxidative cross-coupling of arylhydrazines with terminal alkynes. Chemical Communications, 2015, 51, 13272-13274.	2.2	42
157	Cu-catalyzed aerobic oxidative amidation of aryl alkyl ketones with azoles to afford tertiary amides via selective C–C bond cleavage. Organic Chemistry Frontiers, 2015, 2, 765-770.	2.3	39
158	\hat{l}^2 -Ketophosphonate Formation via Aerobic Oxyphosphorylation of Alkynes or Alkynyl Carboxylic Acids with H-Phosphonates. Organic Letters, 2015, 17, 1786-1789.	2.4	95
159	Highly selective copper-catalyzed trifunctionalization of alkynyl carboxylic acids: an efficient route to bis-deuterated \hat{l}^2 -borylated $\hat{l}\pm,\hat{l}^2$ -styrene. Chemical Communications, 2015, 51, 15394-15397.	2.2	42
160	Sulfonamide formation from sodium sulfinates and amines or ammonia under metal-free conditions at ambient temperature. Green Chemistry, 2015, 17, 1395-1399.	4.6	108
161	Styryl ether formation from benzyl alcohols under transition-metal-free basic DMSO conditions. Organic and Biomolecular Chemistry, 2015, 13, 2267-2272.	1.5	10
162	Synthesis of α-Ketoamides from Aryl Methyl Ketones and N,N-Dimethylformamide via Copper-Catalyzed Aerobic Oxidative Coupling. Synthesis, 2014, 46, 1853-1858.	1.2	21

#	Article	IF	CITATIONS
163	Copperâ€Catalyzed Decarboxylative CN Triple Bond Formation: Direct Synthesis of Benzonitriles from Phenylacetic Acids Under O ₂ Atmosphere. Advanced Synthesis and Catalysis, 2014, 356, 1697-1702.	2.1	53
164	KI-catalyzed arylation of benzothiazoles from the coupling of aryl aldehydes with benzothiazoles in neat water. Organic and Biomolecular Chemistry, 2014, 12, 1044-1047.	1.5	42
165	Aldehydes and Ketones Formation: Copper-Catalyzed Aerobic Oxidative Decarboxylation of Phenylacetic Acids and α-Hydroxyphenylacetic Acids. Journal of Organic Chemistry, 2014, 79, 1867-1871.	1.7	104
166	Synthesis of Primary Amides via Copper-Catalyzed Aerobic Decarboxylative Ammoxidation of Phenylacetic Acids and α-Hydroxyphenylacetic Acids with Ammonia in Water. Organic Letters, 2014, 16, 624-627.	2.4	75
167	A catalyst-free, facile and efficient approach to cyclic esters: synthesis of 4H-benzo[d][1,3]dioxin-4-ones. RSC Advances, 2014, 4, 19856-19860.	1.7	12
168	Chemoselective Copperâ€Catalyzed Acylation of Benzothiazoles with Aryl Methyl Ketones. Advanced Synthesis and Catalysis, 2014, 356, 2445-2452.	2.1	26
169	Synthesis of esters from aldehydes or carboxylic acids with dichloromethane, dichloroethane or dichloropropane under mild conditions. RSC Advances, 2013, 3, 20246.	1.7	11
170	Copper-Catalyzed Oxidative Decarboxylative Arylation of Benzothiazoles with Phenylacetic Acids and \hat{l} ±-Hydroxyphenylacetic Acids with O2 as the Sole Oxidant. Organic Letters, 2013, 15, 5990-5993.	2.4	86
171	Carbonylation of 1-Lithiobutadiene with Carbon Monoxide Followed by Intramolecular Acyllithiation of Câ•C Double Bond and Intermolecular Acylation with Acid Chloride: Scope, Applications, and Mechanistic Aspects. Journal of Organic Chemistry, 2012, 77, 4793-4800.	1.7	4
172	The Supertristeroids:  Large, Chiral, Molecular Bowls Prepared by Trimerization of Pentacyclic Steroidal Ketones. Journal of Organic Chemistry, 2007, 72, 4449-4453.	1.7	8
173	Sterically Congestedin-Methylcyclophanes. Journal of the American Chemical Society, 2005, 127, 11246-11247.	6.6	26
174	Polyphenyl Macrocyclic Oligophenylenes. Journal of the American Chemical Society, 2005, 127, 13732-13737.	6.6	13
175	Reactions of 1,4-Dilithiobutadienes with Isothiocyanates: Preparation of Iminocyclopentadiene Derivatives via Cleavage of the C=S Double Bond of a RN=C=S Molecule ChemInform, 2004, 35, no.	0.1	O
176	Concise Synthesis of Stereodefined Dienols and Cyclopentadienes via Direct Addition of 1-Bromomagnesiobutadienes and 1-Lithiobutadienes to Carbonyl Compounds ChemInform, 2004, 35, no.	0.1	0
177	Concise synthesis of stereodefined dienols and cyclopentadienes via direct addition of 1-bromomagnesiobutadienes and 1-lithiobutadienes to carbonyl compounds. Tetrahedron Letters, 2004, 45, 5159-5162.	0.7	18
178	Reactions of 1,4-dilithiobutadienes with isothiocyanates: preparation of iminocyclopentadiene derivatives via cleavage of the Cî—»S double bond of a RNî—»Cî—»S molecule. Tetrahedron, 2004, 60, 5207-5214.	. 1.0	23
179	Acyl-Lithiation of Olefins: Formation of Cyclopentenones from 1-Lithio-butadienes and CO ChemInform, 2003, 34, no.	0.1	O
180	Preparation of S-containing heterocycles via novel reaction patterns of carbon disulfide with 1-lithiobutadienes and 1,4-dilithiobutadienes. Arkivoc, 2003, 2003, 155-164.	0.3	13

#	Article	lF	CITATION
181	Acyl-Lithiation of Olefins:  Formation of Cyclopentenones from 1-Lithio-butadienes and CO. Organic Letters, 2002, 4, 4627-4629.	2.4	33
182	Stereoselective Synthesis of Polysubstituted 2,5-Dihydrofurans from Reaction of 1,4-Dilithio-1,3-dienes with Aldehydes. Organic Letters, 2002, 4, 2269-2271.	2.4	37
183	Novel reaction patterns of carbon disulfide with organolithium compounds via cleavage of CrS bonds or via cycloaddition reactions. Tetrahedron Letters, 2002, 43, 3533-3535.	0.7	35
184	Novel Cycloaddition of Nitriles with Monolithio- and Dilithiobutadienes. Journal of the American Chemical Society, 2002, 124, 6238-6239.	6.6	64
185	Highly Regio- and Stereoselective 1,1-Cycloaddition of Carbon Monoxide with 1,4-Dilithio-1,3-dienes. Novel Synthetic Methods for 3-Cyclopenten-1-one Derivatives. Journal of the American Chemical Society, 2001, 123, 10419-10420.	6.6	64
186	Dialkenylation of Carbonyl Groups by Alkenyllithium Compounds: Formation of Cyclopentadiene Derivatives by the Reaction of 1,4-Dilithio-1,3-dienes with Ketones and Aldehydes. Angewandte Chemie - International Edition, 2001, 40, 1913-1916.	7.2	70
187	Efficient Synthesis of Cyclopentadienone Derivatives by the Reaction of Carbon Dioxide with 1,4-Dilithio-1,3-dienes. Journal of Organic Chemistry, 2000, 65, 9157-9159.	1.7	54
188	Base-promoted anaerobic intramolecular cyclization synthesis of 4,5-disubstituted-1,2,3-thiadiazoles. Organic Chemistry Frontiers, 0, , .	2.3	0