Olivier Colliot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7102680/publications.pdf

Version: 2024-02-01

163 papers 8,150 citations

43 h-index 84 g-index

183

183
does citations

times ranked

183

9620 citing authors

#	Article	IF	CITATIONS
1	Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse. Medical Image Analysis, 2022, 75, 102219.	7.0	17
2	Multilevel Survival Modeling With Structured Penalties for Disease Prediction From Imaging Genetics Data. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 798-808.	3.9	2
3	Cognitive composites for genetic frontotemporal dementia: GENFI-Cog. Alzheimer's Research and Therapy, 2022, 14, 10.	3.0	4
4	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	1.1	2
5	Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimer's and Dementia, 2022, 18, 1408-1423.	0.4	24
6	A multimodal variational autoencoder for estimating progression scores from imaging and microRNA data in rare neurodegenerative diseases. , 2022, , .		1
7	Homogenization of brain MRI from a clinical data warehouse using contrast-enhanced to non-contrast-enhanced image translation with U-Net derived models. , 2022, , .		1
8	Axial multi-layer perceptron architecture for automatic segmentation of choroid plexus in multiple sclerosis., 2022,,.		5
9	ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing. Computer Methods and Programs in Biomedicine, 2022, 220, 106818.	2.6	13
10	MRI Field Strength Predicts Alzheimer's Disease: a Case Example of Bias in the ADNI Data Set. , 2022, , .		2
11	Association of <i>APOE</i> -Independent Alzheimer Disease Polygenic Risk Score With Brain Amyloid Deposition in Asymptomatic Older Adults. Neurology, 2022, 99, .	1.5	6
12	Machine Learning-Based Prediction of Impulse Control Disorders in Parkinson's Disease From Clinical and Genetic Data. IEEE Open Journal of Engineering in Medicine and Biology, 2022, 3, 96-107.	1.7	2
13	Radiological classification of dementia from anatomical MRI assisted by machine learning-derived maps. Journal of Neuroradiology, 2021, 48, 412-418.	0.6	18
14	Gaussian Graphical Model Exploration and Selection in High Dimension Low Sample Size Setting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3196-3213.	9.7	6
15	Reproducible Evaluation of Diffusion MRI Features for Automatic Classification of Patients with Alzheimer's Disease. Neuroinformatics, 2021, 19, 57-78.	1.5	20
16	Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review. Medical Image Analysis, 2021, 67, 101848.	7.0	50
17	Plasma microRNA signature in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 485-493.	0.9	25
18	Deep learning for brain disorders: from data processing to disease treatment. Briefings in Bioinformatics, 2021, 22, 1560-1576.	3.2	14

#	Article	IF	CITATIONS
19	Automated Categorization of Parkinsonian Syndromes Using <scp>Magnetic Resonance Imaging </scp> in a Clinical Setting. Movement Disorders, 2021, 36, 460-470.	2.2	27
20	Stepwise target controllability identifies dysregulations of macrophage networks in multiple sclerosis. Network Neuroscience, 2021, 5, 337-357.	1.4	1
21	Impairment of episodic memory in genetic frontotemporal dementia: A GENFI study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12185.	1.2	11
22	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	2.8	42
23	A Diffeomorphic Vector Field Approach to Analyze the Thickness of the Hippocampus From 7 T MRI. IEEE Transactions on Biomedical Engineering, 2021, 68, 393-403.	2.5	0
24	Anomaly detection for the individual analysis of brain PET images. Journal of Medical Imaging, 2021, 8, 024003.	0.8	6
25	AD Course Map charts Alzheimer's disease progression. Scientific Reports, 2021, 11, 8020.	1.6	33
26	Primary Progressive Aphasia Associated With <i>GRN</i> Mutations. Neurology, 2021, 97, e88-e102.	1.5	23
27	Exploratory analysis of the genetics of impulse control disorders in Parkinson's disease using genetic risk scores. Parkinsonism and Related Disorders, 2021, 86, 74-77.	1.1	6
28	Clinica: An Open-Source Software Platform for Reproducible Clinical Neuroscience Studies. Frontiers in Neuroinformatics, 2021, 15, 689675.	1.3	60
29	Plasma NfL levels and longitudinal change rates in <i>C9orf72</i> and <i>GRN</i> -associated diseases: from tailored references to clinical applications. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1278-1288.	0.9	25
30	Primary progressive aphasias associated with C9orf72 expansions: Another side of the story. Cortex, 2021, 145, 145-159.	1.1	9
31	Differential early subcortical involvement in genetic FTD within the GENFI cohort. NeuroImage: Clinical, 2021, 30, 102646.	1.4	28
32	Reduction of recruitment costs in preclinical AD trials: validation of automatic pre-screening algorithm for brain amyloidosis. Statistical Methods in Medical Research, 2020, 29, 151-164.	0.7	30
33	Association of plasma YKL-40 with brain amyloid \hat{l}^2 levels, memory performance, and sex in subjective memory complainers. Neurobiology of Aging, 2020, 96, 22-32.	1.5	18
34	Predicting PET-derived myelin content from multisequence MRI for individual longitudinal analysis in multiple sclerosis. Neurolmage, 2020, 223, 117308.	2.1	19
35	A unified framework for association and prediction from vertexâ€wise greyâ€matter structure. Human Brain Mapping, 2020, 41, 4062-4076.	1.9	16
36	Machine learning for classification and prediction of brain diseases: recent advances and upcoming challenges. Current Opinion in Neurology, 2020, 33, 439-450.	1.8	28

#	Article	IF	Citations
37	Comparison and validation of seven white matter hyperintensities segmentation software in elderly patients. Neurolmage: Clinical, 2020, 27, 102357.	1.4	31
38	Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation. Medical Image Analysis, 2020, 63, 101694.	7.0	351
39	Accuracy of MRI Classification Algorithms in a Tertiary Memory Center Clinical Routine Cohort. Journal of Alzheimer's Disease, 2020, 74, 1157-1166.	1.2	19
40	Linear Mixed Models Minimise False Positive Rate and Enhance Precision of Mass Univariate Vertex-Wise Analyses of Grey-Matter. , 2020, , .		0
41	Learning the spatiotemporal variability in longitudinal shape data sets. International Journal of Computer Vision, 2020, 128, 2873-2896.	10.9	10
42	The White Matter Module-Hub Network of Semantics Revealed by Semantic Dementia. Journal of Cognitive Neuroscience, 2020, 32, 1330-1347.	1.1	5
43	Cognitive inhibition impairments in presymptomatic <i>C9orf72</i> carriers. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 366-372.	0.9	14
44	Genome wide association study of incomplete hippocampal inversion in adolescents. PLoS ONE, 2020, 15, e0227355.	1.1	8
45	Ensemble Learning of Convolutional Neural Network, Support Vector Machine, and Best Linear Unbiased Predictor for Brain Age Prediction: ARAMIS Contribution to the Predictive Analytics Competition 2019 Challenge. Frontiers in Psychiatry, 2020, 11, 593336.	1.3	21
46	Visualization approach to assess the robustness of neural networks for medical image classification. , 2020, , .		5
47	Enlightening behavioral disturbances in myotonic dystrophy type 1 through neuropsychology and imaging correlations: Insights from the frontal and temporal lobe functions. Alzheimer's and Dementia, 2020, 16, e043114.	0.4	0
48	Learning Joint Shape and Appearance Representations with Metamorphic Auto-Encoders. Lecture Notes in Computer Science, 2020, , 202-211.	1.0	5
49	Multilevel survival analysis with structured penalties for imaging genetics data. , 2020, , .		2
50	Sulcal morphology in Alzheimer's disease: an effective marker of diagnosis and cognition. Neurobiology of Aging, 2019, 84, 41-49.	1.5	23
51	Latent class analysis identifies functional decline with Amsterdam IADL in preclinical Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 553-562.	1.8	8
52	Biomarker-guided clustering of Alzheimer's disease clinical syndromes. Neurobiology of Aging, 2019, 83, 42-53.	1.5	48
53	Predicting PET-derived demyelination from multimodal MRI using sketcher-refiner adversarial training for multiple sclerosis. Medical Image Analysis, 2019, 58, 101546.	7.0	24
54	Tribute to Anne Bertrand (1978–2018): Neuroradiologist, scientist, teacher and friend. Journal of Neuroradiology, 2019, 46, 155-159.	0.6	0

#	Article	IF	Citations
55	Presymptomatic spinal cord pathology in <i>c9orf72</i> mutation carriers: A longitudinal neuroimaging study. Annals of Neurology, 2019, 86, 158-167.	2.8	71
56	Disrupted core-periphery structure of multimodal brain networks in Alzheimer's disease. Network Neuroscience, 2019, 3, 635-652.	1.4	20
57	Auto-Encoding Meshes of any Topology with the Current-Splatting and Exponentiation Layers. , 2019, , .		0
58	Neurite density is reduced in the presymptomatic phase of <i>C9orf72</i> disease. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 387-394.	0.9	50
59	Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers. Neurobiology of Aging, 2019, 74, 234.e1-234.e8.	1.5	38
60	Learning Low-Dimensional Representations of Shape Data Sets with Diffeomorphic Autoencoders. Lecture Notes in Computer Science, 2019, , 195-207.	1.0	7
61	Fluid-attenuated inversion recovery MRI synthesis from multisequence MRI using three-dimensional fully convolutional networks for multiple sclerosis. Journal of Medical Imaging, 2019, 6, 1.	0.8	24
62	Converting Alzheimer's Disease Map into a Heavyweight Ontology: A Formal Network to Integrate Data. Lecture Notes in Computer Science, 2019, , 207-215.	1.0	4
63	Reproducible evaluation of methods for predicting progression to Alzheimer's disease from clinical and neuroimaging data. , 2019, , .		7
64	Cognitive and neuroimaging features and brain \hat{l}^2 -amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurology, The, 2018, 17, 335-346.	4.9	161
65	Cerebral microbleeds and CSF Alzheimer biomarkers in primary progressive aphasias. Neurology, 2018, 90, e1057-e1065.	1.5	13
66	Early Cognitive, Structural, and Microstructural Changes in Presymptomatic <i>C9orf72</i> Carriers Younger Than 40 Years. JAMA Neurology, 2018, 75, 236.	4.5	108
67	Double Diffeomorphism: Combining Morphometry and Structural Connectivity Analysis. IEEE Transactions on Medical Imaging, 2018, 37, 2033-2043.	5.4	0
68	Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology. Journal of Alzheimer's Disease, 2018, 64, S47-S105.	1.2	122
69	Smaller hippocampal volumes predict lower antidepressant response/remission rates in depressed patients: A meta-analysis. World Journal of Biological Psychiatry, 2018, 19, 360-367.	1.3	34
70	The structure of the mental lexicon: What primary progressive aphasias reveal. Neuropsychologia, 2018, 109, 107-115.	0.7	8
71	P2â€451: USING DIFFUSION MRI FOR CLASSIFICATION AND PREDICTION OF ALZHEIMER'S DISEASE: A REPRODUCIBLE STUDY. Alzheimer's and Dementia, 2018, 14, P891.	0.4	0
72	An Automated Pipeline for the Analysis of PET Data on the Cortical Surface. Frontiers in Neuroinformatics, 2018, 12, 94.	1.3	16

#	Article	IF	Citations
73	Learning Distributions of Shape Trajectories from Longitudinal Datasets: A Hierarchical Model on a Manifold of Diffeomorphisms. , 2018 , , .		22
74	ICâ€Pâ€113: USING DIFFUSION MRI FOR CLASSIFICATION AND PREDICTION OF ALZHEIMER'S DISEASE: A REPRODUCIBLE STUDY. Alzheimer's and Dementia, 2018, 14, P97.	0.4	0
75	Statistical Shape Analysis of Large Datasets Based on Diffeomorphic Iterative Centroids. Frontiers in Neuroscience, 2018, 12, 803.	1.4	5
76	Structural, Microstructural, and Metabolic Alterations in Primary Progressive Aphasia Variants. Frontiers in Neurology, 2018, 9, 766.	1.1	33
77	Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns. Frontiers in Neurology, 2018, 9, 235.	1.1	49
78	Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data. NeuroImage, 2018, 183, 504-521.	2.1	132
79	Multi-modal brain fingerprinting: A manifold approximation based framework. Neurolmage, 2018, 183, 212-226.	2.1	23
80	Learning Myelin Content in Multiple Sclerosis from Multimodal MRI Through Adversarial Training. Lecture Notes in Computer Science, 2018, , 514-522.	1.0	21
81	Multi-Modal Analysis of Genetically-Related Subjects Using SIFT Descriptors in Brain MRI. Mathematics and Visualization, 2018, , 219-228.	0.4	1
82	Analysis of anatomical variability using diffeomorphic iterative centroid in patients with Alzheimer's disease. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2017, 5, 350-358.	1.3	4
83	Amyloidosis and neurodegeneration result in distinct structural connectivity patterns in mild cognitive impairment. Neurobiology of Aging, 2017, 55, 177-189.	1.5	20
84	Reduced basal forebrain atrophy progression in a randomized Donepezil trial in prodromal Alzheimer's disease. Scientific Reports, 2017, 7, 11706.	1.6	79
85	Yet Another ADNI Machine Learning Paper? Paving the Way Towards Fully-Reproducible Research on Classification of Alzheimer's Disease. Lecture Notes in Computer Science, 2017, , 53-60.	1.0	7
86	Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis. Neurolmage, 2017, 158, 242-259.	2.1	39
87	Early life adversity is associated with a smaller hippocampus in male but not female depressed in-patients: a case–control study. BMC Psychiatry, 2017, 17, 71.	1.1	16
88	A Bayesian framework for joint morphometry of surface and curve meshes in multi-object complexes. Medical Image Analysis, 2017, 35, 458-474.	7.0	23
89	[P2–379]: ACCURACY OF MRI CLASSIFICATION ALGORITHMS IN A TERTIARY MEMORY CENTER CLINICAL ROUTINE COHORT. Alzheimer's and Dementia, 2017, 13, P772.	0.4	1
90	Prediction of Amyloidosis from Neuropsychological and MRI Data for Cost Effective Inclusion of Pre-symptomatic Subjects in Clinical Trials. Lecture Notes in Computer Science, 2017, , 357-364.	1.0	1

#	Article	IF	Citations
91	Individual Analysis of Molecular Brain Imaging Data Through Automatic Identification of Abnormality Patterns. Lecture Notes in Computer Science, 2017, , 13-22.	1.0	1
92	Multilevel Modeling with Structured Penalties for Classification from Imaging Genetics Data. Lecture Notes in Computer Science, 2017, , 230-240.	1.0	2
93	White Matter Fiber Segmentation Using Functional Varifolds. Lecture Notes in Computer Science, 2017, , 92-100.	1.0	0
94	O4â€02â€03: Insightâ€Ad Study: A Monocentric Cohort for the Study of the Preclinical Stage of Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P335.	0.4	1
95	Hippocampal volume predicts antidepressant efficacy in depressed patients without incomplete hippocampal inversion. NeuroImage: Clinical, 2016, 12, 949-955.	1.4	17
96	CATI: A Large Distributed Infrastructure for the Neuroimaging of Cohorts. Neuroinformatics, 2016, 14, 253-264.	1.5	33
97	White matter lesions in FTLD: distinct phenotypes characterize <i>GRN</i> and <i>C9ORF72</i> mutations. Neurology: Genetics, 2016, 2, e47.	0.9	20
98	Robust imaging of hippocampal inner structure at 7T: in vivo acquisition protocol and methodological choices. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 475-489.	1.1	7
99	Parsimonious Approximation of Streamline Trajectories in White Matter Fiber Bundles. IEEE Transactions on Medical Imaging, 2016, 35, 2609-2619.	5.4	20
100	Early and protective microglial activation in Alzheimer's disease: a prospective study using ¹⁸ F-DPA-714 PET imaging. Brain, 2016, 139, 1252-1264.	3.7	365
101	Predictors of cognitive decline and treatment response in a clinical trial on suspected prodromal Alzheimer's disease. Neuropharmacology, 2016, 108, 128-135.	2.0	23
102	Reduced Regional Cortical Thickness Rate of Change in Donepezil-Treated Subjects With Suspected Prodromal Alzheimer's Disease. Journal of Clinical Psychiatry, 2016, 77, e1631-e1638.	1.1	38
103	Lateral Temporal Lobe: An Early Imaging Marker of the Presymptomatic GRN Disease?. Journal of Alzheimer's Disease, 2015, 47, 751-759.	1.2	34
104	Incomplete Hippocampal Inversion: A Comprehensive MRI Study of Over 2000 Subjects. Frontiers in Neuroanatomy, 2015, 9, 160.	0.9	47
105	Donepezil decreases annual rate of hippocampal atrophy in suspected prodromal Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 1041-1049.	0.4	102
106	Depressed suicide attempters have smaller hippocampus than depressed patients without suicide attempts. Journal of Psychiatric Research, 2015, 61, 13-18.	1.5	76
107	Sulcal morphology as a new imaging marker for the diagnosis of early onset Alzheimer's disease. Neurobiology of Aging, 2015, 36, 2932-2939.	1.5	39
108	Joint Morphometry of Fiber Tracts and Gray Matter Structures Using Double Diffeomorphisms. Lecture Notes in Computer Science, 2015, 24, 275-287.	1.0	4

#	Article	IF	Citations
109	Extensive White Matter Involvement in Patients With Frontotemporal Lobar Degeneration. JAMA Neurology, 2014, 71, 1562.	4.5	68
110	Structural connectivity differences in left and right temporal lobe epilepsy. NeuroImage, 2014, 100, 135-144.	2.1	184
111	Detection of volume loss in hippocampal layers in Alzheimer's disease using 7ÂT MRI: A feasibility study. NeuroImage: Clinical, 2014, 5, 341-348.	1.4	74
112	Perspective on future role of biological markers in clinical therapy trials of Alzheimer's disease: A long-range point of view beyond 2020. Biochemical Pharmacology, 2014, 88, 426-449.	2.0	105
113	A Prototype Representation to Approximate White Matter Bundles with Weighted Currents. Lecture Notes in Computer Science, 2014, 17, 289-296.	1.0	4
114	The clinical and anatomical heterogeneity of environmental dependency phenomena. Journal of Neurology, 2013, 260, 2262-2270.	1.8	27
115	Magnetic resonance imaging for diagnosis of early Alzheimer's disease. Revue Neurologique, 2013, 169, 724-728.	0.6	6
116	Spatial and Anatomical Regularization of SVM: A General Framework for Neuroimaging Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 682-696.	9.7	60
117	Is Hippocampal Volume a Good Marker to Differentiate Alzheimer's Disease from Frontotemporal Dementia?. Journal of Alzheimer's Disease, 2013, 36, 57-66.	1.2	79
118	Bayesian Atlas Estimation for the Variability Analysis of Shape Complexes. Lecture Notes in Computer Science, 2013, 16, 267-274.	1.0	13
119	CSF tau markers are correlated with hippocampal volume in Alzheimer's disease. Neurobiology of Aging, 2012, 33, 1253-1257.	1.5	91
120	Distinct Patterns of Antiamyloid- \hat{l}^2 Antibodies in Typical and Atypical Alzheimer Disease. Archives of Neurology, 2012, 69, 1181-5.	4.9	23
121	Automatic hippocampal segmentation in temporal lobe epilepsy: Impact of developmental abnormalities. Neurolmage, 2012, 59, 3178-3186.	2.1	52
122	Is radiological evaluation as good as computer-based volumetry to assess hippocampal atrophy in Alzheimer's disease?. Neuroradiology, 2012, 54, 1321-1330.	1.1	39
123	Contrast-Based Fully Automatic Segmentation of White Matter Hyperintensities: Method and Validation. PLoS ONE, 2012, 7, e48953.	1.1	49
124	Early ADC changes in motor structures predict outcome of acute stroke better than lesion volume. Journal of Neuroradiology, 2011, 38, 105-112.	0.6	21
125	Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database. Neurolmage, 2011, 56, 766-781.	2.1	834
126	Spatial regularization of SVM for the detection of diffusion alterations associated with stroke outcome. Medical Image Analysis, 2011, 15, 729-737.	7.0	66

#	Article	IF	Citations
127	Diffeomorphic Brain Registration Under Exhaustive Sulcal Constraints. IEEE Transactions on Medical Imaging, 2011, 30, 1214-1227.	5.4	62
128	Tissue at risk in the deep middle cerebral artery territory is critical to stroke outcome. Neuroradiology, 2011, 53, 763-771.	1.1	26
129	Segmentation ciblée d'images IRM et maladie d'Alzheimer. Irbm, 2011, 32, 19-26.	3.7	3
130	Similar amyloid-Î ² burden in posterior cortical atrophy and Alzheimer's disease. Brain, 2011, 134, 2036-2043.	3.7	121
131	Anatomical Regularization on Statistical Manifolds for the Classification of Patients with Alzheimerâ \in ^{Ms} Disease. Lecture Notes in Computer Science, 2011, , 201-208.	1.0	1
132	Spatial prior in SVM-based classification of brain images. Proceedings of SPIE, 2010, , .	0.8	4
133	The Amnestic Syndrome of Hippocampal type in Alzheimer's Disease: An MRI Study. Journal of Alzheimer's Disease, 2010, 22, 285-294.	1.2	141
134	Distinct structural changes underpin clinical phenotypes in patients with Gilles de la Tourette syndrome. Brain, 2010, 133, 3649-3660.	3.7	149
135	Spatially Regularized SVM for the Detection of Brain Areas Associated with Stroke Outcome. Lecture Notes in Computer Science, 2010, 13, 316-323.	1.0	11
136	Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI. Hippocampus, 2009, 19, 579-587.	0.9	283
137	Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology, 2009, 51, 73-83.	1.1	409
138	3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets and Systems, 2009, 160, 1457-1473.	1.6	211
139	Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression?. Neurolmage, 2009, 45, 29-37.	2.1	254
140	Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. Neurolmage, 2009, 46, 749-761.	2.1	161
141	Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging. Neurolmage, 2009, 47, 1476-1486.	2.1	354
142	DISCO: A Coherent Diffeomorphic Framework for Brain Registration under Exhaustive Sulcal Constraints. Lecture Notes in Computer Science, 2009, 12, 730-738.	1.0	8
143	Using anatomical knowledge expressed as fuzzy constraints to segment the heart in CT images. Pattern Recognition, 2008, 41, 2525-2540.	5.1	28
144	Automatic detection of subtle focal cortical dysplasia using surface-based features on MRI., 2008, , .		12

#	Article	IF	Citations
145	Discrimination between Alzheimer Disease, Mild Cognitive Impairment, and Normal Aging by Using Automated Segmentation of the Hippocampus. Radiology, 2008, 248, 194-201.	3.6	233
146	Surface-Based Texture and Morphological Analysis Detects Subtle Cortical Dysplasia. Lecture Notes in Computer Science, 2008, 11 , 645 - 652 .	1.0	34
147	Identification of Atrophy Patterns in Alzheimer's Disease Based on SVM Feature Selection and Anatomical Parcellation. Lecture Notes in Computer Science, 2008, , 124-132.	1.0	13
148	Surface-Based Vector Analysis Using Heat Equation Interpolation: A New Approach to Quantify Local Hippocampal Volume Changes. Lecture Notes in Computer Science, 2008, 11, 1008-1015.	1.0	18
149	Explicit Incorporation of Prior Anatomical Information Into a Nonrigid Registration of Thoracic and Abdominal CT and 18-FDG Whole-Body Emission PET Images. IEEE Transactions on Medical Imaging, 2007, 26, 164-178.	5.4	29
150	Fully Automatic Segmentation of the Hippocampus and the Amygdala from MRI Using Hybrid Prior Knowledge. Lecture Notes in Computer Science, 2007, 10, 875-882.	1.0	16
151	On the ternary spatial relation "Between". IEEE Transactions on Systems, Man, and Cybernetics, 2006, 36, 312-327.	5.5	59
152	Individual voxel-based analysis of gray matter in focal cortical dysplasia. NeuroImage, 2006, 29, 162-171.	2.1	120
153	Segmentation of focal cortical dysplasia lesions on MRI using level set evolution. NeuroImage, 2006, 32, 1621-1630.	2.1	44
154	Automatic Brain Tumor Segmentation Using Symmetry Analysis and Deformable Models., 2006,,.		19
155	In Vivo Profiling of Focal Cortical Dysplasia on High-resolution MRI with Computational Models. Epilepsia, 2006, 47, 134-142.	2.6	48
156	Integration of fuzzy spatial relations in deformable modelsâ€"Application to brain MRI segmentation. Pattern Recognition, 2006, 39, 1401-1414.	5.1	120
157	3D Brain Tumor Segmentation Using Fuzzy Classification and Deformable Models. Lecture Notes in Computer Science, 2006, , 312-318.	1.0	7
158	Fusion of spatial relationships for guiding recognition, example of brain structure recognition in 3D MRI. Pattern Recognition Letters, 2005, 26, 449-457.	2.6	35
159	Mathematical Modeling of the Relationship "between―Based On Morphological Operators. , 2005, , 299-308.		3
160	Approximate reflectional symmetries of fuzzy objects with an application in model-based object recognition. Fuzzy Sets and Systems, 2004, 147, 141-163.	1.6	24
161	Computational modeling of thoracic and abdominal anatomy using spatial relationships for image segmentation. Real Time Imaging, 2004, 10, 263-273.	1.6	32
162	Description of brain internal structures by means of spatial relations for MR image segmentation. , 2004, , .		17

#	Article	IF	CITATIONS
163	Evaluation of the symmetry plane in 3D MR brain images. Pattern Recognition Letters, 2003, 24, 2219-2233.	2.6	70