Jacob Notbohm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7102605/publications.pdf Version: 2024-02-01

LACOR NOTROHM

#	Article	IF	CITATIONS
1	Unjamming and cell shape in the asthmatic airwayÂepithelium. Nature Materials, 2015, 14, 1040-1048.	27.5	484
2	Cellular Contraction and Polarization Drive Collective Cellular Motion. Biophysical Journal, 2016, 110, 2729-2738.	0.5	135
3	Microbuckling of fibrin provides a mechanism for cell mechanosensing. Journal of the Royal Society Interface, 2015, 12, 20150320.	3.4	89
4	Preventing Nanoscale Wear of Atomic Force Microscopy Tips Through the Use of Monolithic Ultrananocrystalline Diamond Probes. Small, 2010, 6, 1140-1149.	10.0	85
5	Contractile forces regulate cell division in three-dimensional environments. Journal of Cell Biology, 2014, 205, 155-162.	5.2	71
6	A cytoskeletal clutch mediates cellular force transmission in a soft, three-dimensional extracellular matrix. Molecular Biology of the Cell, 2017, 28, 1959-1974.	2.1	63
7	Disease-causing mutation in α-actinin-4 promotes podocyte detachment through maladaptation to periodic stretch. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1517-1522.	7.1	51
8	Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers. Integrative Biology (United Kingdom), 2015, 7, 1186-1195.	1.3	48
9	A model for compression-weakening materials and the elastic fields due to contractile cells. Journal of the Mechanics and Physics of Solids, 2015, 85, 16-32.	4.8	47
10	Analysis of nanoindentation of soft materials with an atomic force microscope. Journal of Materials Research, 2012, 27, 229-237.	2.6	44
11	Biomechanics of Collective Cell Migration in Cancer Progression: Experimental and Computational Methods. ACS Biomaterials Science and Engineering, 2019, 5, 3766-3787.	5.2	34
12	Directional cues in the tumor microenvironment due to cell contraction against aligned collagen fibers. Acta Biomaterialia, 2021, 129, 96-109.	8.3	30
13	Mechanical response of collagen networks to nonuniform microscale loads. Soft Matter, 2017, 13, 5749-5758.	2.7	29
14	Three-Dimensional Analysis of the Effect of Epidermal Growth Factor on Cell-Cell Adhesion in Epithelial Cell Clusters. Biophysical Journal, 2012, 102, 1323-1330.	0.5	27
15	Heterogeneity and nonaffinity of cell-induced matrix displacements. Physical Review E, 2018, 98, .	2.1	24
16	Displacement Propagation in Fibrous Networks Due to Local Contraction. Journal of Biomechanical Engineering, 2018, 140, .	1.3	23
17	Cells exploit a phase transition to mechanically remodel the fibrous extracellular matrix. Journal of the Royal Society Interface, 2021, 18, 20200823.	3.4	21
18	Homogenizing cellular tension by hepatocyte growth factor in expanding epithelial monolayer. Scientific Reports, 2017, 7, 45844.	3.3	20

Јасов Nотвонм

#	Article	IF	CITATIONS
19	Tractions and Stress Fibers Control Cell Shape and Rearrangements in Collective Cell Migration. Physical Review X, 2020, 10, .	8.9	20
20	Modulus of Fibrous Collagen at the Length Scale of a Cell. Experimental Mechanics, 2019, 59, 1323-1334.	2.0	19
21	Spatiotemporal force and motion in collective cell migration. Scientific Data, 2020, 7, 197.	5.3	16
22	Effect of substrate stiffness on friction in collective cell migration. Scientific Reports, 2022, 12, 2474.	3.3	15
23	Length scale dependent elasticity in random three-dimensional fiber networks. Mechanics of Materials, 2019, 138, 103155.	3.2	13
24	Substrate curvature induces fallopian tube epithelial cell invasion via cell–cell tension in a model of ovarian cortical inclusion cysts. Integrative Biology (United Kingdom), 2019, 11, 342-352.	1.3	12
25	Topological defects in the mesothelium suppress ovarian cancer cell clearance. APL Bioengineering, 2021, 5, 036103.	6.2	11
26	Coordinated tractions increase the size of a collectively moving pack in a cell monolayer. Extreme Mechanics Letters, 2021, 48, 101438.	4.1	11
27	Two-Dimensional Culture Systems to Enable Mechanics-Based Assays for Stem Cell-Derived Cardiomyocytes. Experimental Mechanics, 2019, 59, 1235-1248.	2.0	10
28	Effect of matrix heterogeneity on cell mechanosensing. Soft Matter, 2021, 17, 10263-10273.	2.7	10
29	Multiplexed, high-throughput measurements of cell contraction and endothelial barrier function. Laboratory Investigation, 2019, 99, 138-145.	3.7	7
30	Three-dimensional Traction Force Microscopy for Studying Cellular Interactions with Biomaterials. Procedia IUTAM, 2012, 4, 144-150.	1.2	5
31	Quantification of focal adhesion dynamics of cell movement based on cell-induced collagen matrix deformation using second-harmonic generation microscopy. Journal of Biomedical Optics, 2018, 23, 1.	2.6	5
32	Coordination of contractile tension and cell area changes in an epithelial cell monolayer. Physical Review E, 2022, 105, 024404.	2.1	3
33	Quantification of Errors in Applying DIC to Fiber Networks Imaged by Confocal Microscopy. Experimental Mechanics, 2022, 62, 1175-1189.	2.0	3
34	Identifying Features of Cardiac Disease Phenotypes Based on Mechanical Function in a Catecholaminergic Polymorphic Ventricular Tachycardia Model. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	2
35	Application of 3D Traction Force Microscopy to Mechanotransduction of Cell Clusters. Applied Mechanics and Materials, 0, 70, 21-27.	0.2	1
36	Quantitative image analysis for investigating cell-matrix interactions. Proceedings of SPIE, 2017, , .	0.8	1

Јасов Nотвонм

#	Article	IF	CITATIONS
37	Microbuckling of Fibrous Matrices Enables Long Range Cell Mechanosensing. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 135-141.	0.5	1
38	The push for a place in the crowd. Nature Physics, 2018, 14, 533-534.	16.7	1
39	Migration and Contraction of Fibroblasts from Normal and Scar Vocal Folds with Applications to Wound Healing. Biophysical Journal, 2018, 114, 517a.	0.5	1
40	Two-Dimensional Culture Systems to Investigate Mechanical Interactions of the Cell. Conference Proceedings of the Society for Experimental Mechanics, 2018, , 37-39.	0.5	1
41	<i>Physiology</i> 's Impact: Applying Mathematics and Advanced Technologies. Physiology, 2013, 28, 363-365.	3.1	0
42	Mechanical Response of Fibrous Materials to Local Contractile Loads. Biophysical Journal, 2018, 114, 365a.	0.5	0