Pascal Mermillod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7102487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current status of embryo technologies in sheep and goat. Theriogenology, 2003, 59, 171-188.	0.9	238
2	Role of Epidermal Growth Factor in Bovine Oocyte Maturation and Preimplantation Embryo Development in Vitro1. Biology of Reproduction, 1996, 54, 1420-1429.	1.2	231
3	High developmental competence of cattle oocytes maintained at the germinal vesicle stage for 24 hours in culture by specific inhibition of MPF kinase activity. Molecular Reproduction and Development, 2000, 55, 89-95.	1.0	181
4	Oviduct extracellular vesicles protein content and their role during oviduct–embryo cross-talk. Reproduction, 2017, 154, 253-268.	1.1	157
5	Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology, 2002, 57, 1523-1532.	0.9	149
6	Morphology and biochemistry of in-vitro produced bovine embryos: implications for their cryopreservation. Human Reproduction, 1995, 10, 3004-3011.	0.4	145
7	Spatio-Temporal Expression of the Germ Cell Marker Genes MATER, ZAR1, GDF9, BMP15,andVASA in Adult Bovine Tissues, Oocytes, and Preimplantation Embryos1. Biology of Reproduction, 2004, 71, 1359-1366.	1.2	143
8	Factors affecting bovine embryo development in synthetic oviduct fluid following oocyte maturation and fertilization in vitro. Theriogenology, 1995, 43, 1115-1128.	0.9	140
9	Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology, 2001, 56, 17-29.	0.9	135
10	Effect of growth factors, EGF and IGF-I, and estradiol on in vitro maturation of sheep oocytes. Theriogenology, 2000, 54, 209-218.	0.9	127
11	Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 2020, 14, 991-1004.	1.3	108
12	Reproductive biotechnologies for endangered mammalian species. Reproduction, Nutrition, Development, 2000, 40, 493-504.	1.9	107
13	Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics, 2018, 19, 622.	1.2	104
14	Bovine blastocyst production in vitro after inhibition of oocyte meiotic resumption for 24 h. Reproduction, 1997, 109, 355-365.	1.1	102
15	Influence of antral follicle size on oocyte characteristics and embryo development in the bovine. Theriogenology, 2005, 63, 841-859.	0.9	96
16	Characterization of the Embryotrophic Activity of Exogenous Protein-Free Oviduct-Conditioned Medium Used in Culture of Cattle Embryos1. Biology of Reproduction, 1993, 49, 582-587.	1.2	95
17	Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo. BMC Developmental Biology, 2007, 7, 125.	2.1	92
18	Use of Heterologous Complementary DNA Array Screening to Analyze Bovine Oocyte Transcriptome and Its Evolution During In Vitro Maturation1. Biology of Reproduction, 2003, 68, 252-261.	1.2	86

#	Article	IF	CITATIONS
19	Prepubertal bovine oocyte: A negative model for studying oocyte developmental competence. Molecular Reproduction and Development, 1996, 45, 231-239.	1.0	83
20	Spatio-Temporal Expression Patterns of Aurora Kinases A, B, and C and Cytoplasmic Polyadenylation-Element-Binding Protein in Bovine Oocytes During Meiotic Maturation1. Biology of Reproduction, 2008, 78, 218-233.	1.2	81
21	Effect of Growth Hormone (GH) on In Vitro Nuclear and Cytoplasmic Oocyte Maturation, Cumulus Expansion, Hyaluronan Synthases, and Connexins 32 and 43 Expression, and GH Receptor Messenger RNA Expression in Equine and Porcine Species1. Biology of Reproduction, 2003, 69, 1013-1022.	1.2	80
22	Effects of cell cycle dependent kinases inhibitor on nuclear and cytoplasmic maturation of porcine oocytes. Molecular Reproduction and Development, 2001, 60, 65-73.	1.0	76
23	In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Molecular Reproduction and Development, 2013, 80, 166-182.	1.0	72
24	Kinetics of gene expression and signaling in bovine cumulus cells throughout IVM in different mediums in relation to oocyte developmental competence, cumulus apoptosis and progesterone secretion. Theriogenology, 2011, 75, 90-104.	0.9	69
25	In vitro production of bovine embryos using individual oocytes. Molecular Reproduction and Development, 1996, 45, 145-150.	1.0	68
26	Successful direct transfer of vitrified sheep embryos. Theriogenology, 2001, 56, 299-305.	0.9	67
27	State-of-the-art production, conservation and transfer of in-vitro-produced embryos in small ruminants. Reproduction, Fertility and Development, 2004, 16, 437.	0.1	65
28	Composing the Early Embryonic Microenvironment: Physiology and Regulation of Oviductal Secretions. International Journal of Molecular Sciences, 2020, 21, 223.	1.8	63
29	Successful in vitro production of embryos in the red deer () and the sika deer (). Theriogenology, 2001, 55, 649-659.	0.9	61
30	MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine. BMC Developmental Biology, 2006, 6, 26.	2.1	61
31	Steroid hormones in bovine oviductal fluid during the estrous cycle. Theriogenology, 2016, 86, 1409-1420.	0.9	60
32	Zygote arrest 1 gene in pig, cattle and human: evidence of different transcript variants in male and female germ cells. Reproductive Biology and Endocrinology, 2006, 4, 12.	1.4	59
33	Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Animal Reproduction Science, 2014, 149, 103-116.	0.5	58
34	Cyclooxygenase-2 is expressed by cumulus cells during oocyte maturation in cattle. Molecular Reproduction and Development, 2002, 61, 93-101.	1.0	57
35	Expression of components of the insulin-like growth factor system and gonadotropin receptors in bovine cumulus–oocyte complexes during oocyte maturation. Domestic Animal Endocrinology, 2004, 27, 179-195.	0.8	57
36	Bovine embryos cultured in serum-poor oviduct-conditioned medium need cooperation to reach the blastocyst stage. Theriogenology, 1994, 42, 445-453.	0.9	56

#	Article	IF	CITATIONS
37	New Insights into the Mechanisms of Fertilization: Comparison of the Fertilization Steps, Composition, and Structure of the Zona Pellucida Between Horses and Pigs1. Biology of Reproduction, 2009, 81, 856-870.	1.2	56
38	Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells atÂearly or late stage of preimplantation development. Theriogenology, 2014, 81, 1163-1173.	0.9	56
39	Regulation of the bovine oviductal fluid proteome. Reproduction, 2016, 152, 629-644.	1.1	52
40	The characterization of bovine embryos obtained from prepubertal calf oocytes and their viability after non surgical embryo transfer. Theriogenology, 1998, 50, 1201-1210.	0.9	51
41	Oviduct fluid extracellular vesicles regulate polyspermy during porcine in vitro fertilisation. Reproduction, Fertility and Development, 2020, 32, 409.	0.1	51
42	Effect of PUFA on embryo cryoresistance, gene expression and AMPKα phosphorylation in IVF-derived bovine embryos. Prostaglandins and Other Lipid Mediators, 2010, 93, 30-36.	1.0	50
43	Expression of Maternal Transcripts During Bovine Oocyte <i>In Vitro</i> Maturation is Affected by Donor Age. Reproduction in Domestic Animals, 2011, 46, e23-30.	0.6	50
44	InÂvitro production of small ruminant embryos: Late improvements and further research. Theriogenology, 2014, 81, 1149-1162.	0.9	50
45	Assessment of in vitro fertility of deer spermatozoa by heterologous IVF with zona-free bovine oocytes. Theriogenology, 2001, 56, 261-274.	0.9	48
46	Porcine oviductal extracellular vesicles interact with gametes and regulate sperm motility and survival. Theriogenology, 2020, 155, 240-255.	0.9	48
47	Kinetics of nuclear maturation and protein profiles of oocytes from prepubertal and adult cattle during in vitro maturation. Theriogenology, 1998, 50, 917-929.	0.9	46
48	Characterization of in vitro growth of bovine preantral ovarian follicles: A preliminary study. Theriogenology, 1993, 39, 811-821.	0.9	45
49	Several signaling pathways are involved in the control of cattle oocyte maturation. Molecular Reproduction and Development, 2004, 69, 466-474.	1.0	43
50	In vitro embryo production in goats: Slaughterhouse and laparoscopic ovum pick up–derived oocytes have different kinetics and requirements regarding maturation media. Theriogenology, 2014, 81, 1021-1031.	0.9	41
51	Development of bovine embryos in vitro following oocyte maturation under defined conditions. Reproduction, Nutrition, Development, 1994, 34, 329-339.	1.9	39
52	Identification of a new expanding family of genes characterized by atypical LRR domains. Localization of a cluster preferentially expressed in oocyte. FEBS Letters, 2003, 555, 533-538.	1.3	39
53	Improved vitrification method allowing direct transfer of goat embryos. Theriogenology, 2006, 66, 1004-1011.	0.9	39
54	Vitrification of in vitro produced bovine blastocysts: methodological studies and developmental capacity. Animal Reproduction Science, 1998, 52, 93-104.	0.5	38

#	Article	IF	CITATIONS
55	Effect of follicle size and quality on the ability of follicular fluid to support cytoplasmic maturation of bovine oocytes. Molecular Reproduction and Development, 1996, 43, 477-483.	1.0	37
56	Genes Preferentially Expressed in Bovine Oocytes Revealed by Subtractive and Suppressive Hybridization1. Biology of Reproduction, 2005, 73, 713-720.	1.2	37
57	Anti-Müllerian hormone plasma concentration in prepubertal ewe lambs as a predictor of their fertility at a young age. BMC Veterinary Research, 2012, 8, 118.	0.7	36
58	Effects of dilution procedure and culture conditions after thawing on survival of frozen bovine blastocysts produced in vitro. Reproduction, 1993, 97, 65-69.	1.1	35
59	Calving outcome following transfer of embryos produced in vitro in different conditions. Animal Reproduction Science, 1996, 44, 1-10.	0.5	35
60	Protein synthesis and mRNA storage in cattle oocytes maintained under meiotic block by roscovitine inhibition of MPF activity. Molecular Reproduction and Development, 2004, 69, 457-465.	1.0	35
61	Combination of oviduct fluid and heparin to improve monospermic zygotes production during porcine inÂvitro fertilization. Theriogenology, 2016, 86, 495-502.	0.9	33
62	Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct. Biology of Reproduction, 2021, 105, 317-331.	1.2	33
63	Steroid hormones regulate sperm–oviduct interactions in the bovine. Reproduction, 2017, 154, 497-508.	1.1	32
64	In-vitro regulation of primordial follicle activation: challenges for fertility preservation strategies. Reproductive BioMedicine Online, 2018, 36, 491-499.	1.1	32
65	The Oviductal Extracellular Vesicles' RNA Cargo Regulates the Bovine Embryonic Transcriptome. International Journal of Molecular Sciences, 2020, 21, 1303.	1.8	32
66	Effect of protein synthesis inhibition before or during in vitro maturation on subsequent development of bovine oocytes. Theriogenology, 1998, 50, 417-431.	0.9	31
67	Glycogen synthase kinase 3B in bovine oocytes and granulosa cells: possible involvement in meiosis during in vitro maturation. Reproduction, 2009, 138, 235-246.	1.1	31
68	<scp>hCTLA</scp> 4â€lg transgene expression in keratocytes modulates rejection of corneal xenografts in a pig to nonâ€human primate anterior lamellar keratoplasty model. Xenotransplantation, 2014, 21, 431-443.	1.6	31
69	Cell Therapy for Parkinson's Disease: A Translational Approach to Assess the Role of Local and Systemic Immunosuppression. American Journal of Transplantation, 2016, 16, 2016-2029.	2.6	31
70	Metabolomic Profile of Oviductal Extracellular Vesicles across the Estrous Cycle in Cattle. International Journal of Molecular Sciences, 2019, 20, 6339.	1.8	31
71	State-of-the-art production, conservation and transfer of in-vitro-produced embryos in small ruminants. Reproduction, Fertility and Development, 2004, 16, 437-45.	0.1	31
72	Effect of coculture with oviduct epithelial cells on viability after transfer of vitrified in vitro produced goat embryos. Theriogenology, 2007, 68, 908-913.	0.9	30

#	Article	IF	CITATIONS
73	Effect of storage temperature during transport of ovaries on in vitro embryo production in Iberian red deer (Cervus elaphus hispanicus). Theriogenology, 2011, 75, 65-72.	0.9	30
74	Morphologic characterization of osteoblast-like cell cultures isolated from newborn rat calvaria. Calcified Tissue International, 1990, 47, 92-104.	1.5	29
75	Collection of oocytes and production of blastocysts in vitro from individual, slaughtered cows. Reproduction, 1992, 96, 717-723.	1.1	29
76	Survival of frozen or vitrified bovine blastocysts produced in vitro in synthetic oviduct fluid. Theriogenology, 1996, 46, 1425-1439.	0.9	29
77	In vitro comparisons of two cryopreservation techniques for equine embryos: Slow-cooling and open pulled straw (OPS) vitrification. Theriogenology, 2005, 64, 1619-1632.	0.9	27
78	Successful use of oviduct epithelial cell coculture for in vitro production of viable red deer (Cervus) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
79	Thymosins β-4 and β-10 are expressed in bovine ovarian follicles and upregulated in cumulus cells during meiotic maturation. Reproduction, Fertility and Development, 2010, 22, 1206.	0.1	27
80	Identification by proteomics of oviductal sperm-interacting proteins. Reproduction, 2018, 155, 457-466.	1.1	26
81	Metabolomic profiling of bovine oviductal fluid across the oestrous cycle using proton nuclear magnetic resonance spectroscopy. Reproduction, Fertility and Development, 2018, 30, 1021.	0.1	26
82	Assessment of the reproductive parameters, laparoscopic oocyte recovery and the first embryos produced in vitro from endangered Canindé goats (Capra hircus). Reproductive Biology, 2013, 13, 325-332.	0.9	25
83	Bovine Oviduct Epithelial Cells Dedifferentiate Partly in Culture, While Maintaining their Ability to Improve Early Embryo Development Rate and Quality. Reproduction in Domestic Animals, 2015, 50, 719-729.	0.6	25
84	Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro. Reproduction, Fertility and Development, 2017, 29, 66.	0.1	25
85	Comparative results of in vitro and in vivo survival of vitrified in vitro produced goat and sheep embryos. Theriogenology, 1999, 51, 175.	0.9	24
86	Laparoscopic ovum pick-up and in vitro production of sika deer embryos: Effect of season and culture conditions. Theriogenology, 2006, 66, 1334-1342.	0.9	23
87	Oviduct Fluid Extracellular Vesicles Change the Phospholipid Composition of Bovine Embryos Developed In Vitro. International Journal of Molecular Sciences, 2020, 21, 5326.	1.8	23
88	Origin of the follicular fluid added to the media during bovine IVM influences embryonic development. Theriogenology, 1995, 44, 85-94.	0.9	22
89	Effects of bone morphogenetic protein 4 (BMP4) supplementation during culture of the sheep ovarian cortex. Animal Reproduction Science, 2014, 149, 124-134.	0.5	22
90	The use of antifreeze protein type III for vitrification of inÂvitro matured bovine oocytes. Cryobiology, 2016, 73, 324-328.	0.3	22

#	Article	IF	CITATIONS
91	Sperm interactions with the female reproductive tract: A key for successful fertilization in mammals. Molecular and Cellular Endocrinology, 2020, 516, 110956.	1.6	22
92	Effect of sperm survival and CTC staining pattern on in vitro fertilization of porcine oocytes. Theriogenology, 2002, 57, 1917-1927.	0.9	20
93	Influence of heparin or the presence of cumulus cells during fertilization on the in vitro production of goat embryos. Animal Reproduction Science, 2013, 138, 82-89.	0.5	20
94	Progesterone induces sperm release from oviductal epithelial cells by modifying sperm proteomics, lipidomics and membrane fluidity. Molecular and Cellular Endocrinology, 2020, 504, 110723.	1.6	20
95	Inhibitors of c-Jun phosphorylation impede ovine primordial follicle activation. Molecular Human Reproduction, 2016, 22, 338-349.	1.3	19
96	Relative effects of location relative to the corpus luteum and lactation on the transcriptome of the bovine oviduct epithelium. BMC Genomics, 2019, 20, 233.	1.2	19
97	Assessment of cytoplasmic competence of prepubertal calf oocytes by use of nuclear transfer. Theriogenology, 1998, 49, 187.	0.9	18
98	Effect of fetal calf serum on the quality of in vitro produced cattle embryos. Theriogenology, 1999, 51, 257.	0.9	17
99	Heterologous <i>In Vitro</i> Fertility Evaluation of Cryopreserved Iberian Red Deer Epididymal Spermatozoa with Zonaâ€intact Sheep Oocytes and its Relationship with the Characteristics of Thawed Spermatozoa. Reproduction in Domestic Animals, 2008, 43, 293-298.	0.6	17
100	Intrinsic quality of goat oocytes already found denuded at collection for inÂvitro embryo production. Theriogenology, 2016, 86, 1989-1998.	0.9	16
101	Impacts of and interactions between environmental stress and epigenetic programming during early embryo development. Reproduction, Fertility and Development, 2015, 27, 1125.	0.1	15
102	Protein-free oviduct-conditioned medium for complete bovine embryo development. Veterinary Record, 1992, 130, 13-13.	0.2	15
103	Three year results of in vitro production of bovine embryos in serum-poor bovine oviduct conditioned medium. An overview. Reproduction, Nutrition, Development, 1996, 36, 493-502.	1.9	14
104	Identification of 56 Proteins Involved in Embryo–Maternal Interactions in the Bovine Oviduct. International Journal of Molecular Sciences, 2020, 21, 466.	1.8	14
105	Spatiotemporal profiling of the bovine oviduct fluid proteome around the time of ovulation. Scientific Reports, 2022, 12, 4135.	1.6	14
106	Characterization of bovine oviduct epithelial cell monolayers cultured under serum-free conditions. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 664-670.	0.7	13
107	Sonic Hedgehog promotes inÂvitro oocyte maturation and term development of embryos in Taiwan native goats. Theriogenology, 2017, 103, 52-58.	0.9	12
108	Impact of pro-oxidant agents on the morula-blastocyst transition in bovine embryos. Molecular Reproduction and Development, 2005, 71, 339-346.	1.0	11

#	Article	IF	CITATIONS
109	Assessment LOPU-IVF in Japanese sika deer (Cervus nippon nippon) and application to Vietnamese sika deer (Cervus nippon pseudaxis) a related subspecies threatened with extinction. Theriogenology, 2012, 78, 2039-2049.	0.9	11
110	Vitrification of immature and in vitro matured bovine cumulus-oocyte complexes: Effects on oocyte structure and embryo development. Livestock Science, 2017, 199, 50-56.	0.6	11
111	Influence of metabolic status and genetic merit for fertility on proteomic composition of bovine oviduct fluidâ€. Biology of Reproduction, 2019, 101, 893-905.	1.2	11
112	Intraoviductal concentrations of steroid hormones during in vitro culture changed phospholipid profiles and cryotolerance of bovine embryos. Molecular Reproduction and Development, 2019, 86, 661-672.	1.0	11
113	Can caprine arthritis encephalitis virus (CAEV) be transmitted by in vitro fertilization with experimentally infected sperm?. Theriogenology, 2012, 77, 644-651.	0.9	10
114	Preimplantation genetic diagnosis in Welsh pony embryos after biopsy and cryopreservation1,2. Journal of Animal Science, 2015, 93, 5222-5231.	0.2	10
115	Genetic merit for fertility alters the bovine uterine luminal fluid proteomeâ€. Biology of Reproduction, 2020, 102, 730-739.	1.2	10
116	High developmental competence of cattle oocytes maintained at the germinal vesicle stage for 24 hours in culture by specific inhibition of MPF kinase activity. Molecular Reproduction and Development, 2000, 55, 89-95.	1.0	10
117	Comparison of cell proliferation index in equine and caprine embryos using a modified BrdU incorporation assay. Theriogenology, 2005, 64, 1823-1832.	0.9	9
118	In vitro survival of follicles in prepubertal ewe ovarian cortex cryopreserved by slow freezing or non-equilibrium vitrification. Journal of Assisted Reproduction and Genetics, 2019, 36, 1823-1835.	1.2	9
119	Antifreeze proteins for low-temperature preservation in reproductive medicine: A systematic review over the last three decades. Theriogenology, 2021, 176, 94-103.	0.9	8
120	Determination of sex and scrapie resistance genotype in preimplantation ovine embryos. Molecular Reproduction and Development, 2009, 76, 183-190.	1.0	7
121	Effect of different culture systems on adipocyte differentiation-related protein (ADRP) in bovine embryos. Animal Reproduction Science, 2014, 145, 105-113.	0.5	7
122	Graphene oxide: A glimmer of hope for Assisted Reproductive Technology. Carbon, 2019, 150, 518-530.	5.4	7
123	In vitro production of small ruminant embryos: latest improvements and further research. Reproduction, Fertility and Development, 2021, 33, 31.	0.1	7
124	Correlations between chemical parameters, mitogenic activity and embryotrophic activity of bovine oviduct-conditioned medium. Theriogenology, 1997, 48, 659-673.	0.9	6
125	The effect of a GnRH agonist on follicular dynamics and response to FSH stimulation in prepubertal calves. Reproduction, Nutrition, Development, 1999, 39, 133-144.	1.9	6
126	Oral propylene glycol modifies follicular fluid and gene expression profiles in cumulus–oocyte complexes and embryos in feed-restricted heifers. Reproduction, Fertility and Development, 2018, 30, 417.	0.1	6

Pascal Mermillod

#	Article	IF	CITATIONS
127	In Vitro Culture of Embryos from LOPU-Derived Goat Oocytes. Methods in Molecular Biology, 2019, 2006, 141-153.	0.4	6
128	Different co-culture systems have the same impact on bovine embryo transcriptome. Reproduction, 2017, 154, 695-710.	1.1	5
129	Dynamic Changes in the Proteome of Early Bovine Embryos Developed In Vivo. Frontiers in Cell and Developmental Biology, 2022, 10, 863700.	1.8	5
130	Sex and PRNP Genotype Determination in Preimplantation Caprine Embryos. Reproduction in Domestic Animals, 2011, 46, 656-663.	0.6	4
131	Easy, quick and cheap technique to cryopreserve Welsh B pony blastocyst. Journal of Equine Veterinary Science, 2016, 41, 53.	0.4	4
132	Attachment of Coxiella burnetii to the zona pellucida of inÂvitro produced goat embryos. Theriogenology, 2018, 106, 259-264.	0.9	4
133	La maturation de l'ovocyte de mammifÃ [¨] res Medecine/Sciences, 1999, 15, 148.	0.0	4
134	Laparoscopic ovum pick up (LOPU) in goats: from hormonal treatment to oocyte possible destinations. Revista Brasileira De Ciência Veterinária, 2014, 21, 3-11.	0.0	4
135	Factors that affect oocyte vitrification in small ruminants. Revista Brasileira De Ciência Veterinária, 2014, 21, 69-75.	0.0	4
136	Establishment of pregnancies after transfer of biopsied equine embryos. Journal of Equine Veterinary Science, 2012, 32, 402-403.	0.4	3
137	Research on fertility, evolution, or revolution?. Animal Frontiers, 2015, 5, 4-6.	0.8	3
138	The activity of three glycosidases (β-Εacetyloglucosaminidase, α-mannosidase, and β-galactosidase) in the follicular fluid and in the maturation medium affects bovine oocyte maturation. Theriogenology, 2016, 85, 1468-1475.	0.9	3
139	Reproductive Seasonality Affects In Vitro Embryo Production Outcomes in Adult Goats. Animals, 2021, 11, 873.	1.0	3
140	Editorial: Biofluid Extracellular Vesicles and Their Involvement in Animal Reproductive Physiology. Frontiers in Veterinary Science, 2021, 8, 747138.	0.9	3
141	F-013. In-vitro maturation of oocytes from domestic species. Human Reproduction, 1999, 14, 384-385.	0.4	2
142	Enzymatic activity of mouse group X-sPLA2 improves inÂvitro production of preimplantation bovine embryos. Theriogenology, 2019, 131, 113-122.	0.9	1
143	Use of MALDI-TOF mass spectrometry to explore the peptidome and proteome of in-vitro produced bovine embryos pre-exposed to oviduct fluid. Reproductive Biology, 2021, 21, 100545.	0.9	1
144	The origin of follicular fluid added to the media during bovine IVM influences embryonic development. Theriogenology, 1994, 41, 296.	0.9	0

#	Article	IF	CITATIONS
145	Erratum to "Calving outcome following transfer of embryos produced in vitro in different conditions―[Animal Reproduction Science 44 (1996) 1–10. Animal Reproduction Science, 1997, 47, 253.	0.5	0
146	Porcine oocyte preincubation in oviductal fluid flush before in vitro fertilization in the presence of oviductal epithelial cells improves monospermic zygote production. Zygote, 2021, 29, 350-357.	0.5	0
147	Metabolomic analysis of oviduct fluid on day 3 post-estrus in Holstein heifers. Reproductive Biology, 2021, 21, 100512.	0.9	0