Albert M Manich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7102029/publications.pdf

Version: 2024-02-01

361413 526287 1,377 116 20 27 citations h-index g-index papers 128 128 128 1034 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The formation of liposomes in vitro by mixtures of lipids modeling the composition of the stratum corneum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 101, 9-19.	4.7	43
2	Enzymatic Carbonâ^'Carbon Bond Formation in Water-in-Oil Highly Concentrated Emulsions (Gel) Tj ETQq0 0 0 r	gBŢ_ĹOver	lock 10 Tf 50 1
3	Abrasion Kinetics of Wool and Blended Fabrics. Textile Reseach Journal, 2001, 71, 469-474.	2.2	41
4	Chitosan contribution on wool treatments with enzyme. Carbohydrate Polymers, 2008, 71, 515-523.	10.2	38
5	Water absorption/desorption of human hair and nails. Thermochimica Acta, 2010, 503-504, 33-39.	2.7	38
6	Percutaneous penetration of liposomes using the tape stripping technique. International Journal of Pharmaceutics, 1996, 139, 197-203.	5.2	36
7	Compatibility of plastic with phase change materials (PCM). International Journal of Energy Research, 2011, 35, 765-771.	4.5	32
8	Reduction of the formaldehyde content in leathers treated with formaldehyde resins by means of plant polyphenols. Journal of Cleaner Production, 2017, 148, 518-526.	9.3	32
9	Adsorption isotherm, thermodynamic and kinetics studies of polyphenols onto tannery shavings. Chemical Engineering Journal, 2012, 183, 21-29.	12.7	31
10	Viscoelastic Behavior of Polypropylene Fibers 1. Textile Reseach Journal, 1999, 69, 325-330.	2.2	29
11	YARN HAIRINESS UPDATE. Textile Progress, 1997, 26, 1-29.	2.0	27
12	Restoring important hair properties with wool keratin proteins and peptides. Fibers and Polymers, 2010, 11, 1055-1061.	2.1	27
13	Elastic Recovery and Inverse Relaxation of Polyester Staple Fiber Rotor Spun Yarns. Textile Reseach Journal, 1992, 62, 196-199.	2.2	24
14	Optimizing a Wool Dyeing Process with an Azoic 1:2 Metal Complex Dye Using Commercially Available Liposomes. Textile Reseach Journal, 1998, 68, 635-642.	2.2	24
15	Viscoelastic modeling of natural and synthetic textile yarns. Journal of Applied Polymer Science, 2000, 76, 2062-2067.	2.6	24
16	Thermal analysis of merino wool fibres without internal lipids. Journal of Applied Polymer Science, 2007, 104, 545-551.	2.6	24
17	Moisture sorption/desorption of protein fibres. Thermochimica Acta, 2013, 552, 70-76.	2.7	23
18	Phosphatidilcholine Liposomes as Vehicles for Disperse Dyes for Dyeing Polyester/Wool Blends. Textile Reseach Journal, 1998, 68, 209-218.	2.2	22

#	Article	IF	CITATIONS
19	Effect of wool keratin proteins and peptides on hair water sorption kinetics. Journal of Thermal Analysis and Calorimetry, 2010, 102, 43-48.	3.6	22
20	The Influence of the Spinning Process, Yarn Linear Density, and Fibre Properties on the Hairiness of Ring-spun and Rotor-spun Cotton Yarns. Journal of the Textile Institute, 1988, 79, 189-197.	1.9	21
21	Exogenous and endogenous lipids of human hair. Skin Research and Technology, 2017, 23, 479-485.	1.6	21
22	Lipid Bilayers Including Cholesterol as Vehicles for Acid Dyes in Wool Dyeing. Textile Reseach Journal, 1993, 63, 643-649.	2.2	20
23	Multilamellar Liposomes Including Cholesterol as Carriers of Azobenzene Disperse Dyes in Wool Dyeing. Textile Reseach Journal, 1995, 65, 163-170.	2.2	20
24	YARN HAIRINESS: A FURTHER UPDATE. Textile Progress, 2002, 31, 1-44.	2.0	20
25	The influence of hair lipids in ethnic hair properties. International Journal of Cosmetic Science, 2016, 38, 77-84.	2.6	20
26	Stability of Polyunsaturated Fatty Acids in Egg Powder Processed and Stored under Various Conditions. Journal of Agricultural and Food Chemistry, 1995, 43, 2254-2259.	5.2	19
27	Skin barrier modification with organic solvents. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1935-1943.	2.6	19
28	PCDD/Fs in ambient air: TSP and PM10 sampler comparison. Atmospheric Environment, 2006, 40, 567-573.	4.1	18
29	Thermal transitions of polylactide false-twist textured multifilaments determined by DSC and TMA. Journal of Thermal Analysis and Calorimetry, 2010, 99, 723-731.	3.6	18
30	26—A NEW HAIRINESS METER FOR YARNS. Journal of the Textile Institute, 1980, 71, 277-283.	1.9	17
31	Multilamellar Liposomes Including Cholesterol as Carriers of a 1:2 Metal Complex Dye in Wool Dyeing. Textile Reseach Journal, 1997, 67, 325-333.	2.2	17
32	Thermal Analysis and Differential Solubility of Polyester Fibers and Yarns. Textile Reseach Journal, 2003, 73, 333-338.	2.2	17
33	Thermomechanical analysis of merino wool yarns. Journal of Thermal Analysis and Calorimetry, 2005, 82, 119-123.	3.6	16
34	Influence of a Yarn Extractive Nozzle on the Apparent Loss of Twist in Rotor Open-End Acrylic Staple Spun Yarns. Textile Reseach Journal, 1986, 56, 207-211.	2.2	14
35	Viscoelastic Behaviour and Microstructural Modifications in Acrylic Fibres and Yams as a Function of Textile Manufacturing Processing Conditions. Journal of the Textile Institute, 1999, 90, 526-540.	1.9	14
36	Fabric design considering the optimisation of seam slippage. International Journal of Clothing Science and Technology, 2005, 17, 225-231.	1.1	14

#	Article	IF	Citations
37	Lipid composition influence on the surfactant-induced release of the contents in liposomes formed by lipids modelling the stratum corneum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 259-267.	4.7	13
38	Intermediate aggregates resulting in the interaction of bile salt with liposomes studied by transmission electron microscopy and light scattering techniques. Journal of Microscopy, 1997, 186, 75-83.	1.8	13
39	Relationships between Fabric Sewability and Structural, Physical, and FAST Properties of Woven Wool and Wool-blend Fabrics. Journal of the Textile Institute, 1998, 89, 579-590.	1.9	13
40	Chitosan application on wool before enzymatic treatment. Journal of Applied Polymer Science, 2005, 98, 1938-1946.	2.6	12
41	Effect of Finishing on Woven Fabric Structure and Compressional and Cyclic Multiaxial Strain Properties. Textile Reseach Journal, 2006, 76, 86-93.	2.2	12
42	Effect of lipid modification on stratum corneum permeability. Journal of Thermal Analysis and Calorimetry, 2015, 120, 297-305.	3.6	12
43	Diameter and Hairiness of Ring and Rotor Polyester-Cotton Blended Spun Yarns. Textile Reseach Journal, 1984, 54, 840-844.	2.2	11
44	Internal lipid content and viscoelastic behavior of wool fibers. Journal of Applied Polymer Science, 2004, 92, 3252-3259.	2.6	11
45	Determination of oxidation parameters of fatliquored leather by DSC. Thermochimica Acta, 2005, 429, 205-211.	2.7	11
46	9—THE INFLUENCE OF THE UNDER-PRESSURE IN THE ROTOR ON THE PROPERTIES OF OPEN-END-SPUN COTTON YARNS AT DIFFERENT VALUES OF THE ROTOR SPEED AND OPENING-ROLLER SPEED. Journal of the Textile Institute, 1985, 76, 86-102.	1.9	10
47	Internal Lipid Wool Structure Modification Due to a Nonionic Auxiliary Used in Dyeing at Low Temperatures. Textile Reseach Journal, 1997, 67, 131-136.	2.2	10
48	Influence of leather stretching to gain area yield on its stress-relaxation behavior. Journal of Applied Polymer Science, 2006, 102, 6000-6008.	2.6	10
49	Garment abrasion strength evaluation: a comparative methods study. International Journal of Clothing Science and Technology, 2007, 19, 194-203.	1.1	10
50	Effect of different dispersing agents in the non-isothermal kinetics and thermomechanical behavior of PET/TiO ₂ composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 237-244.	2.2	10
51	The role of SeDeM for characterizing the active substance and polyvinyilpyrrolidone eliminating metastable forms in an oral lyophilizate—A preformulation study. PLoS ONE, 2018, 13, e0196049.	2.5	10
52	On the Generation and Outcome of 3-(N-Phenylamino)propane-1,2-diol Derivatives in Deodorized Model Oils Related to Toxic Oil Syndrome. Chemical Research in Toxicology, 2005, 18, 665-674.	3.3	9
53	Effect of the Air-Jet and the False-Twist texturing processes on the stress-relaxation of polyamide 6.6 yarns. Journal of Applied Polymer Science, 2007, 105, 2482-2487.	2.6	9
54	23â€"THE RELATION BETWEEN THE TWIST AND RESISTANCE TO REPEATED EXTENSIONS OF MAN-MADE-FIBRE ROTOR-SPUN YARNS. Journal of the Textile Institute, 1980, 71, 242-251.	1.9	8

#	Article	IF	CITATIONS
55	The Hair-length Distribution of Yarns, Measured by Means of the Zweigle G 565 Hairiness Meter. Journal of the Textile Institute, 1993, 84, 326-335.	1.9	8
56	Assembling textile structures: wear simulation. International Journal of Clothing Science and Technology, 1997, 9, 75-87.	1.1	8
57	33—FACTORIAL STUDIES IN ROTOR-SPINNING PART I: COTTON YARNS. Journal of the Textile Institute, 1983, 74, 329-339.	1.9	7
58	Microstructure variations of polylactide fibres with texturing conditions. Textile Reseach Journal, 2012, 82, 1996-2005.	2.2	7
59	Dynamic vapour sorption and thermoporometry of polyamide fabrics coated with chitosan hydrogels. Thermochimica Acta, 2016, 639, 47-52.	2.7	7
60	External lipid function in ethnic hairs. Journal of Cosmetic Dermatology, 2019, 18, 1912-1920.	1.6	7
61	Relation Between Twist and Abrasion Resistance of Rotor Spun Yarns. Textile Reseach Journal, 1984, 54, 314-317.	2.2	6
62	3—FACTORIAL STUDIES IN ROTOR-SPINNING PART II: POLYESTER-FIBRE AND POLYESTER-FIBRE-COTTON BLENDED-FIBRE YARNS. Journal of the Textile Institute, 1984, 75, 23-27.	1.9	6
63	Embryogenesis induction in petals of Araujia sericifera. Plant Cell, Tissue and Organ Culture, 1997, 51, 95-102.	2.3	6
64	Characterization of retanned chrome bovine leather by thermomechanical analysis. Journal of Applied Polymer Science, 2001, 82, 314-322.	2.6	6
65	Further Progress on the Abrasion Kinetic Modelling of Woven Fabrics Using the Martindale Abrasion Tester. Journal of the Textile Institute, 2004, 95, 369-379.	1.9	6
66	Use of modified leather shavings in the adsolubilization of 2-naphthol: Thermodynamic and kinetics studies. Chemical Engineering Journal, 2013, 222, 77-84.	12.7	6
67	Approach to design space from retrospective quality data. Pharmaceutical Development and Technology, 2016, 21, 26-38.	2.4	6
68	Dyestuffs and formaldehyde content in split leather treated with formaldehyde resins. Dyes and Pigments, 2018, 158, 50-59.	3.7	6
69	Influence of alkaline delignification on moisture uptake behavior and bonding enthalpies of hemp. Journal of Applied Polymer Science, 2021, 138, 50990.	2.6	6
70	Relation Between Twist and Abrasion Resistance of Rotor Yarns Part I: Cotton Yarns, Viscose, and Acrylics. Textile Reseach Journal, 1983, 53, 453-456.	2.2	5
71	38—THE HAIRINESS OF MOHAIR AND WOOL WORSTED-SPUN YARNS: CORRELATION BETWEEN THE RESULTS OBTAINED WITH THE SHIRLEY HAIRINESS METER AND THOSE OBTAINED WITH THE DIGITAL ITQT APPARATUS. Journal of the Textile Institute, 1984, 75, 363-374.	1.9	5
72	A First Approach to the Study of the Spinnability of Ring-spun and Rotor-spun Cotton Yarns. Journal of the Textile Institute, 1985, 76, 292-295.	1.9	5

#	Article	IF	CITATIONS
73	The Determination of the Equivalent Machine Twist in Dref III Friction-spun Yarns. Journal of the Textile Institute, 1987, 78, 80-87.	1.9	5
74	Shrinkproofing Untreated Wool with Hercosett/Uvitex NFW/Hydrogen Peroxide Systems—Physicochemical Properties of These Systems. Textile Reseach Journal, 1990, 60, 709-713.	2.2	5
7 5	Comparison between Standards for Seamâ€woven Fabric Properties Determination. International Journal of Clothing Science and Technology, 1994, 6, 7-14.	1.1	5
76	Water sorption of nails treated with wool keratin proteins and peptides. Journal of Thermal Analysis and Calorimetry, 2011, 104, 323-329.	3.6	5
77	Water sorption evaluation of stratum corneum. Thermochimica Acta, 2014, 583, 43-48.	2.7	5
78	34—A CONTRIBUTION TO THE STUDY OF THE INFLUENCE OF THE DESIGN OF THE YARN-WITHDRAWAL TUBE ON THE DIAMETER AND HAIRINESS OF OPEN-END-SPUN ACRYLIC-FIBRE YARNS. Journal of the Textile Institute, 1986, 77, 403-415.	1.9	4
79	Determination of the heatsetting temperature of polyester by TMA. Journal of Thermal Analysis and Calorimetry, 2003, 72, 729-735.	3.6	4
80	The effects of texturing induced microstructural changes on the relaxation behaviour of polyamide 66 multifilament yarns. Fibers and Polymers, 2007, 8, 512-519.	2.1	4
81	Optimisation of novel amine shrinkproofing and dye-assist treatments on wool. Coloration Technology, 2008, 107, 19-23.	0.1	4
82	Adsolubilisation of organic compounds onto collagen fibres. Journal of Colloid and Interface Science, 2010, 351, 466-471.	9.4	4
83	Effect of processing and wearing on viscoelastic modeling of polylactide/wool and polyester/wool woven fabrics subjected to bursting. Textile Reseach Journal, 2014, 84, 1961-1975.	2.2	4
84	Effect of Surface Treatment of Titanium Dioxide Nanoparticles on Non-Isothermal Crystallization Behavior, Viscoelastic Transitions and Cold Crystallization of Poly(Ethylene Terephthalate) Nanocomposites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 831-841.	2.2	4
85	Effect of the Presence of an Ester of Montanic Acids With Multifunctional Alcohols in the Composites of Titanium Dioxide Nanoparticles With Poly (Ethylene Terephthalate) in Their Non-Isothermal Crystallization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015 52 770-777	2.2	4
86	11—A CONTRIBUTION TO THE STUDY OF THE HAIRINESS OF ROTOR-SPUN YARNS BY MEANS OF THE DIGITAL HAIRINESS METER PART I: THE INFLUENCE OF THE ROTOR GEOMETRY AND OTHER SPINNING PARAMETERS ON THE HAIRINESS OF OPEN-END-SPUN ACRYLIC-FIBRE YARNS. Journal of the Textile Institute, 1981, 72, 121-130.	1.9	3
87	The Relation between the Twist and Resistance to Repeated Extensions of Cotton Rotor-spun Yarns. Journal of the Textile Institute, 1981, 72, 186-187.	1.9	3
88	27—FACTORIAL STUDIES IN ROTOR-SPINNING PART III: ACRYLIC-FIBRE OPEN-END-SPUN YARNS. Journal of the Textile Institute, 1984, 75, 259-266.	1.9	3
89	Twist and Linear Density Coefficient of Variation-Length Curves of Polyester/Cotton Yarns Spun by Different Processes. Textile Reseach Journal, 1992, 62, 115-120.	2.2	3
90	The Effect of Testing Speed on the Hairiness of Ring-spun and Sirospun Yarns. Journal of the Textile Institute, 1998, 89, 605-607.	1.9	3

#	Article	lF	Citations
91	Effect of the air-jet and the false-twist texturing processes on the thermomechanical behaviour of polyamide 6.6 yarns. Journal of Thermal Analysis and Calorimetry, 2008, 93, 921-926.	3.6	3
92	Relationship between microstructure and properties of false-twist textured and stabilized polylactide. Part 1: dimensional stability, mechanical properties and thermomechanical behavior. Textile Reseach Journal, 2013, 83, 1055-1064.	2.2	3
93	Proteomic and transcriptomic analysis of rice tranglutaminase and chloroplast-related proteins. Plant Science, 2014, 229, 142-153.	3.6	3
94	Effect of Water Treatment on the Fiber–Matrix Bonding and Durability of Cellulose Fiber Cement Composites. Journal of Biobased Materials and Bioenergy, 2015, 9, 486-492.	0.3	3
95	Analysis of lignin content in alkaline treated hemp fibers: thermogravimetric studies and determination of kinetics of different decomposition steps. Journal of Wood Chemistry and Technology, 2021, 41, 210-219.	1.7	3
96	12—A CONTRIBUTION TO THE STUDY OF THE HAIRINESS OF ROTOR-SPUN YARNS BY MEANS OF THE DIGITAL HAIRINESS METER PART II: THE INFLUENCE OF PROCESS PARAMETERS ON THE HAIRINESS OF OPEN-END-SPUN POLYESTER-FIBRE, COTTON, AND BLENDED-FIBRE YARNS. Journal of the Textile Institute, 1981, 72, 131-140.	1.9	2
97	The Comparative Spinnability of Ring- and Rotor-spun Cotton Yarns. Journal of the Textile Institute, 1988, 79, 666-672.	1.9	2
98	The Hairiness of Cotton-spun Yarns. The Effect of Fibre Properties on Measurements Made with the Zweigle G565 Hairiness Meter. Journal of the Textile Institute, 1990, 81, 86-88.	1.9	2
99	Optimizing Hercosett/Optical Brightener Agent/Hydrogen Peroxide Systems Applied to Untreated Wool for Shrinkproofing. Textile Reseach Journal, 1992, 62, 162-168.	2.2	2
100	A New Photoelectric Device for the Measurement of Yarn Diameter and Yarn Evenness. Journal of the Textile Institute, 1998, 89, 711-712.	1.9	2
101	The efficiency of a non-aqueous shrink-resist treatment in controlling the moisture regain of wool. Coloration Technology, 2008, 107, 261-265.	0.1	2
102	Relationship between microstructure and properties of false-twist textured and stabilized polylactide. Part 2. physicochemical characterization, accessibility of the amorphous phase and dyeing behavior. Textile Reseach Journal, 2013, 83, 1065-1074.	2.2	2
103	The effect of internal lipids on the water sorption kinetics of keratinised tissues. Journal of Thermal Analysis and Calorimetry, 2016, 123, 2013-2020.	3.6	2
104	Influence of alkaline delignification time on the moisture uptake behaviour of hemp. Journal of the Textile Institute, 0 , 1 - 11 .	1.9	2
105	The Relation between the Twist and Resistance to Repeated Extensions of Open-end-spun Blended-fibre Yarns. Journal of the Textile Institute, 1982, 73, 97-98.	1.9	1
106	20â€"THE INFLUENCE OF THE AIR PRESSURE AT THE ROTOR-CLEANING DEVICE OF ROTOR-SPINNING MACHINES ON THE PROPERTIES OF COTTON OPEN-END-SPUN YARNS. Journal of the Textile Institute, 1985, 76, 301-313.	1.9	1
107	Strength at "Theoretically Null Twist―of Acrylic and Polyester/Cotton Rotor Spun Yarns: Application to Prediction of "Machine Twist― Textile Reseach Journal, 1988, 58, 238-245.	2.2	1
108	Investigation into the Composition, Size, and Morphology of Dust Generated during Wool Processing. Journal of the Textile Institute, 2000, 91, 460-462.	1.9	1

#	Article	IF	CITATIONS
109	Optimising Comfort during Wool and Blended Fabrics Design. Materials Science Forum, 2004, 455-456, 767-770.	0.3	1
110	Viscoelastic modeling of natural and synthetic textile yarns. Journal of Applied Polymer Science, 2000, 76, 2062.	2.6	1
111	Kinetics of alkaline delignification of hemp and determination of lignin content by thermogravimetry. Journal of Wood Chemistry and Technology, 2022, 42, 181-192.	1.7	1
112	A Contribution to the Study of the Contraction of Rotor Yarns. Textile Reseach Journal, 1980, 50, 279-283.	2,2	0
113	The Use of Neural Nets to Simulate the Spinning Process. Journal of the Textile Institute, 1998, 89, 712-714.	1.9	0
114	Thermal Characterization and Mechanical Properties of Pla Yarns., 2010,, 181-189.		0
115	Effect of texturing on porosity and critical dissolution time of polyamide 6.6 multifilaments. Fibers and Polymers, 2014, 15, 297-301.	2.1	0
116	IMPROVING THE QUALITY OF LIFE AND COMFORT IN WOOL AND BLENDED FABRICS FOR THE ELDERLY. , 2006, , 99-106.		0