List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7101973/publications.pdf Version: 2024-02-01

IINTIN LT

#	Article	IF	CITATIONS
1	Two-dimensional molybdenum carbide (MXene) as an efficient nanoadditive for achieving superlubricity under ultrahigh pressure. Friction, 2023, 11, 369-382.	3.4	18
2	Functionalized graphene-oxide nanosheets with amino groups facilitate macroscale superlubricity. Friction, 2023, 11, 187-200.	3.4	9
3	Extremely low friction on gold surface with surfactant molecules induced by surface potential. Friction, 2023, 11, 513-523.	3.4	3
4	Boundary Slip of Oil Molecules at MoS ₂ Homojunctions Governing Superlubricity. ACS Applied Materials & Interfaces, 2022, 14, 8644-8653.	4.0	13
5	Liquid-based nanogenerator fabricated by a self-assembled fluoroalkyl monolayer with high charge density for energy harvesting. Matter, 2022, 5, 1466-1480.	5.0	15
6	Quantum dots of graphene oxide as nano-additives trigger macroscale superlubricity with an extremely short running-in period. Materials Today Nano, 2022, 18, 100219.	2.3	14
7	Synergy of phospholipid and hyaluronan based super-lubricated hydrogels. Applied Materials Today, 2022, 27, 101499.	2.3	5
8	Cylindrical bearing inspired oil enhanced rolling friction based nanogenerator. Nano Energy, 2022, 99, 107372.	8.2	10
9	Alkyl-functionalized black phosphorus nanosheets triggers macroscale superlubricity on diamond-like carbon film. Chemical Engineering Journal, 2022, 449, 137764.	6.6	15
10	Tribological behavior of layered double hydroxides with various chemical compositions and morphologies as grease additives. Friction, 2021, 9, 952-962.	3.4	35
11	Liquid superlubricity with 2D material additives. , 2021, , 167-187.		1
12	Superlubricity of water-based lubricants. , 2021, , 333-357.		1
13	In-situ formation of tribofilm with Ti3C2Tx MXene nanoflakes triggers macroscale superlubricity. Tribology International, 2021, 154, 106695.	3.0	64
14	Electricity generation from the interaction of liquid–solid interface: a review. Journal of Materials Chemistry A, 2021, 9, 8870-8895.	5.2	50
15	Macroscale superlubricity of Si-doped diamond-like carbon film enabled by graphene oxide as additives. Carbon, 2021, 176, 358-366.	5.4	48
16	Effect of Immersion Duration on Shear Behavior of Granite Fractures. Rock Mechanics and Rock Engineering, 2021, 54, 4809-4823.	2.6	12
17	Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide. ACS Applied Materials & Interfaces, 2021, 13, 31947-31956.	4.0	33
18	Superlubricity Achieved with Zwitterionic Brushes in Diverse Conditions Induced by Shear Actions. Macromolecules, 2021, 54, 5719-5727.	2.2	20

#	Article	IF	CITATIONS
19	Fluorination to enhance superlubricity performance between self-assembled monolayer and graphite in water. Journal of Colloid and Interface Science, 2021, 596, 44-53.	5.0	15
20	Hexadecane-containing sandwich structure based triboelectric nanogenerator with remarkable performance enhancement. Nano Energy, 2021, 87, 106198.	8.2	40
21	Temporary or permanent liquid superlubricity failure depending on shear-induced evolution of surface topography. Tribology International, 2021, 161, 107076.	3.0	17
22	Synthesis and characterizations of zwitterionic copolymer hydrogels with excellent lubrication behavior. Tribology International, 2020, 143, 106026.	3.0	33
23	Tribo-Induced Interfacial Material Transfer of an Atomic Force Microscopy Probe Assisting Superlubricity in a WS ₂ /Graphene Heterojunction. ACS Applied Materials & Interfaces, 2020, 12, 4031-4040.	4.0	35
24	Macroscale superlubricity achieved between zwitterionic copolymer hydrogel and sapphire in water. Materials and Design, 2020, 188, 108441.	3.3	30
25	Origins of Superlubricity Promoted by Hydrated Multivalent Ions. Journal of Physical Chemistry Letters, 2020, 11, 184-190.	2.1	47
26	Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: Tool wear, cutting forces and cutting vibration. Journal of Manufacturing Processes, 2020, 49, 35-49.	2.8	52
27	Superlubricity of carbon nanostructures. Carbon, 2020, 158, 1-23.	5.4	163
28	Potential-Dependent Friction on a Graphitic Surface in Ionic Solution. Journal of Physical Chemistry C, 2020, 124, 23745-23751.	1.5	11
29	Enhancement of friction performance of fluorinated graphene and molybdenum disulfide coating by microdimple arrays. Carbon, 2020, 167, 122-131.	5.4	32
30	Electricity generation by sliding an ionic solution droplet on a self-assembled reduced graphene oxide film. Journal of Materials Chemistry A, 2020, 8, 12735-12743.	5.2	14
31	Graphene-induced reconstruction of the sliding interface assisting the improved lubricity of various tribo-couples. Materials and Design, 2020, 191, 108661.	3.3	23
32	The role of water lubrication in critical state fault slip. Engineering Geology, 2020, 271, 105606.	2.9	20
33	Superlubrication obtained with mixtures of hydrated ions and polyethylene glycol solutions in the mixed and hydrodynamic lubrication regimes. Journal of Colloid and Interface Science, 2020, 579, 479-488.	5.0	39
34	Microscale superlubricity at multiple gold–graphite heterointerfaces under ambient conditions. Carbon, 2020, 161, 827-833.	5.4	18
35	Fabrication of a graphene layer probe to measure force interactions in layered heterojunctions. Nanoscale, 2020, 12, 5435-5443.	2.8	17
36	Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol. ACS Applied Materials & Interfaces, 2020, 12, 18859-18869.	4.0	51

#	Article	IF	CITATIONS
37	Graphene lubrication. Applied Materials Today, 2020, 20, 100662.	2.3	84
38	Insight into the Lubrication Behavior of Phospholipids Pre-adsorbed on Silica Surfaces at Different Adsorption Temperatures. Langmuir, 2020, 36, 13477-13484.	1.6	6
39	Enhancement of friction performance enabled by a synergetic effect between graphene oxide and molybdenum disulfide. Carbon, 2019, 154, 266-276.	5.4	64
40	Cationic Surfactant Micelles Lubricate Graphitic Surface in Water. Langmuir, 2019, 35, 11108-11113.	1.6	10
41	Zwitterionic Hydrogel Incorporated Graphene Oxide Nanosheets with Improved Strength and Lubricity. Langmuir, 2019, 35, 11452-11462.	1.6	40
42	Mechanism of Superlubricity Conversion with Polyalkylene Glycol Aqueous Solutions. Langmuir, 2019, 35, 11784-11790.	1.6	22
43	Contribution of a Tribo-Induced Silica Layer to Macroscale Superlubricity of Hydrated Ions. Journal of Physical Chemistry C, 2019, 123, 20270-20277.	1.5	55
44	Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments. ACS Applied Materials & Interfaces, 2019, 11, 40470-40480.	4.0	42
45	Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid. Carbon, 2019, 151, 76-83.	5.4	86
46	Tribochemical Behaviors of Onion-like Carbon Films as High-Performance Solid Lubricants with Variable Interfacial Nanostructures. ACS Applied Materials & Interfaces, 2019, 11, 25535-25546.	4.0	46
47	Superlubricity of Polyalkylene Glycol Aqueous Solutions Enabled by Ultrathin Layered Double Hydroxide Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 20249-20256.	4.0	62
48	Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water. Journal of Physical Chemistry Letters, 2019, 10, 2978-2984.	2.1	37
49	Investigation of the lubrication properties and synergistic interaction of biocompatible liposome-polymer complexes applicable to artificial joints. Colloids and Surfaces B: Biointerfaces, 2019, 178, 469-478.	2.5	18
50	AFM Study on Superlubricity between Ti6Al4V/Polymer Surfaces Achieved with Liposomes. Biomacromolecules, 2019, 20, 1522-1529.	2.6	23
51	Molecular behaviors in thin film lubrication—Part three: Superlubricity attained by polar and nonpolar molecules. Friction, 2019, 7, 625-636.	3.4	49
52	Macroscale Superlubricity Achieved With Various Liquid Molecules: A Review. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	46
53	Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions. ACS Applied Materials & amp; Interfaces, 2019, 11, 6568-6574.	4.0	76
54	Gradual degeneration of liquid superlubricity: Transition from superlubricity to ordinary lubrication, and lubrication failure. Tribology International, 2019, 130, 352-358.	3.0	11

#	Article	IF	CITATIONS
55	Water-based superlubricity in vacuum. Friction, 2019, 7, 192-198.	3.4	17
56	Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive. Langmuir, 2018, 34, 3578-3587.	1.6	59
57	Improvement of Load Bearing Capacity of Nanoscale Superlow Friction by Synthesized Fluorinated Surfactant Micelles. ACS Applied Nano Materials, 2018, 1, 953-959.	2.4	8
58	Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes. Advanced Science, 2018, 5, 1700616.	5.6	99
59	Normal and Frictional Force Hysteresis between Selfâ€Assembled Fluorosurfactant Micelle Arrays at the Nanoscale. Advanced Materials Interfaces, 2018, 5, 1700802.	1.9	7
60	Superlubricity of 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate Ionic Liquid Induced by Tribochemical Reactions. Langmuir, 2018, 34, 5245-5252.	1.6	47
61	Graphene Nanoflakes: Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes (Adv. Sci. 3/2018). Advanced Science, 2018, 5, 1870018.	5.6	19
62	Self-Retraction of Surfactant Droplets on a Superhydrophilic Surface. Langmuir, 2018, 34, 15388-15395.	1.6	2
63	Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol. ACS Applied Materials & Interfaces, 2018, 10, 40863-40870.	4.0	131
64	Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure. Advanced Science, 2018, 5, 1800810.	5.6	85
65	Random occurrence of macroscale superlubricity of graphite enabled by tribo-transfer of multilayer graphene nanoflakes. Carbon, 2018, 138, 154-160.	5.4	45
66	Investigation on the Nanomechanics of Liposome Adsorption on Titanium Alloys: Temperature and Loading Effects. Polymers, 2018, 10, 383.	2.0	13
67	Origin of hydration lubrication of zwitterions on graphene. Nanoscale, 2018, 10, 16887-16894.	2.8	36
68	Nonlinear Frictional Energy Dissipation between Silica-Adsorbed Surfactant Micelles. Journal of Physical Chemistry Letters, 2017, 8, 2258-2262.	2.1	18
69	Superlow Friction of Graphite Induced by the Self-Assembly of Sodium Dodecyl Sulfate Molecular Layers. Langmuir, 2017, 33, 12596-12601.	1.6	17
70	Speed dependence of liquid superlubricity stability with H ₃ PO ₄ solution. RSC Advances, 2017, 7, 49337-49343.	1.7	13
71	Investigation of Superlubricity Achieved by Polyalkylene Glycol Aqueous Solutions. Advanced Materials Interfaces, 2016, 3, 1600531.	1.9	37
72	AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles. Langmuir, 2016, 32, 5593-5599.	1.6	55

#	Article	IF	CITATIONS
73	Investigation of running-in process in water-based lubrication aimed at achieving super-low friction. Tribology International, 2016, 102, 257-264.	3.0	49
74	New achievements in superlubricity from international workshop on superlubricity: fundamental and applications. Friction, 2015, 3, 344-351.	3.4	32
75	Investigation of the difference in liquid superlubricity between water- and oil-based lubricants. RSC Advances, 2015, 5, 63827-63833.	1.7	62
76	Superlubricity of silicone oil achieved between two surfaces by running-in with acid solution. RSC Advances, 2015, 5, 30861-30868.	1.7	53
77	Effect of pH on the liquid superlubricity between Si ₃ N ₄ and glass achieved with phosphoric acid. RSC Advances, 2014, 4, 45735-45741.	1.7	10
78	Mechanism of Biological Liquid Superlubricity of <i>Brasenia schreberi</i> Mucilage. Langmuir, 2014, 30, 3811-3816.	1.6	45
79	Investigations of the superlubricity of sapphire against ruby under phosphoric acid lubrication. Friction, 2014, 2, 164-172.	3.4	40
80	Hydrodynamic effect on the superlubricity of phosphoric acid between ceramic and sapphire. Friction, 2014, 2, 173-181.	3.4	58
81	Reduction of friction stress of ethylene glycol by attached hydrogen ions. Scientific Reports, 2014, 4, 7226.	1.6	23
82	Superlubricity Achieved with Mixtures of Polyhydroxy Alcohols and Acids. Langmuir, 2013, 29, 5239-5245.	1.6	92
83	Superlubricity of Si3N4 sliding against SiO2 under linear contact conditions in phosphoric acid solutions. Science China Technological Sciences, 2013, 56, 1678-1684.	2.0	19
84	Advancements in superlubricity. Science China Technological Sciences, 2013, 56, 2877-2887.	2.0	54
85	Analysis of Measurement Inaccuracy in Superlubricity Tests. Tribology Transactions, 2013, 56, 141-147.	1.1	30
86	Superlubricity Achieved with Mixtures of Acids and Clycerol. Langmuir, 2013, 29, 271-275.	1.6	126
87	Investigations on the mechanism of superlubricity achieved with phosphoric acid solution by direct observation. Journal of Applied Physics, 2013, 114, 114901.	1.1	34
88	Superlubricity Mechanism of Brasenia Schreberi Mucilage. , 2012, , .		0
89	Friction Process of Superlubricity. , 2012, , .		1
90	Tribochemistry and Superlubricity Induced by Hydrogen Ions. Langmuir, 2012, 28, 15816-15823.	1.6	83

#	Article	IF	CITATIONS
91	Excellent Lubricating Behavior of Brasenia schreberi Mucilage. Langmuir, 2012, 28, 7797-7802.	1.6	74
92	Superlubricity Behavior with Phosphoric Acid–Water Network Induced by Rubbing. Langmuir, 2011, 27, 9413-9417.	1.6	173
93	Relationship between the size of SiO2 nanospheres and the structure colour. Micro and Nano Letters, 2011, 6, 527.	0.6	2
94	Relationship between the size of SiO <inf>2</inf> nano spheres and the structure color. , 2011, , .		0