Pablo E Castillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7101466/publications.pdf

Version: 2024-02-01

100 papers 14,232 citations

52 h-index 96 g-index

126 all docs

126 does citations

times ranked

126

13331 citing authors

#	Article	IF	CITATIONS
1	Donor-derived vasculature is required to support neocortical cell grafts after stroke. Stem Cell Research, 2022, 59, 102642.	0.3	7
2	Activation of Extrasynaptic Kainate Receptors Drives Hilar Mossy Cell Activity. Journal of Neuroscience, 2022, 42, 2872-2884.	1.7	8
3	Presynaptic FMRP and local protein synthesis support structural and functional plasticity of glutamatergic axon terminals. Neuron, 2022, 110, 2588-2606.e6.	3.8	29
4	Unique transsynaptic complexes enable long-term synaptic plasticity in a synapse-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	0
5	CPEB3-dependent increase in GluA2 subunits impairs excitatory transmission onto inhibitory interneurons in a mouse model of fragile X. Cell Reports, 2022, 39, 110853.	2.9	5
6	The ins and outs of inhibitory synaptic plasticity: Neuron types, molecular mechanisms and functional roles. European Journal of Neuroscience, 2021, 54, 6882-6901.	1.2	16
7	Modulation of NMDA Receptors by G-protein-coupled receptors: Role in Synaptic Transmission, Plasticity and Beyond. Neuroscience, 2021, 456, 27-42.	1.1	27
8	Retrograde Suppression of Post-Tetanic Potentiation at the Mossy Fiber-CA3 Pyramidal Cell Synapse. ENeuro, 2021, 8, ENEURO.0450-20.2021.	0.9	2
9	Presynaptic NMDA receptors facilitate short-term plasticity and BDNF release at hippocampal mossy fiber synapses. ELife, 2021, 10, .	2.8	20
10	Multiple cannabinoid signaling cascades powerfully suppress recurrent excitation in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
11	Excitatory and inhibitory receptors utilize distinct post- and trans-synaptic mechanisms in vivo. ELife, 2021, 10, .	2.8	5
12	Altered synaptic connectivity and brain function in mice lacking microglial adapter protein lba1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	35
13	CB1-receptor-mediated inhibitory LTD triggers presynaptic remodeling via protein synthesis and ubiquitination. ELife, 2020, 9, .	2.8	19
14	Sam68 Enables Metabotropic Glutamate Receptor-Dependent LTD in Distal Dendritic Regions of CA1 Hippocampal Neurons. Cell Reports, 2019, 29, 1789-1799.e6.	2.9	9
15	Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation. Neuron, 2018, 97, 1137-1152.e5.	3.8	68
16	Long-Term Plasticity of Neurotransmitter Release: Emerging Mechanisms and Contributions to Brain Function and Disease. Annual Review of Neuroscience, 2018, 41, 299-322.	5.0	120
17	Neurotrophin and FGF Signaling Adapter Proteins, FRS2 and FRS3, Regulate Dentate Granule Cell Maturation and Excitatory Synaptogenesis. Neuroscience, 2018, 369, 192-201.	1.1	9
18	Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology, 2017, 124, 13-24.	2.0	180

#	Article	IF	Citations
19	Closing the gap: long-term presynaptic plasticity in brain function and disease. Current Opinion in Neurobiology, 2017, 45, 106-112.	2.0	46
20	LTP at Hilar Mossy Cell-Dentate Granule Cell Synapses Modulates Dentate Gyrus Output by Increasing Excitation/Inhibition Balance. Neuron, 2017, 95, 928-943.e3.	3.8	71
21	Unconventional NMDA Receptor Signaling. Journal of Neuroscience, 2017, 37, 10800-10807.	1.7	99
22	Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. ELife, 2017, 6, .	2.8	136
23	De novo synaptogenesis induced by GABA in the developing mouse cortex. Science, 2016, 353, 1037-1040.	6.0	164
24	CaMKII Phosphorylation of TARPÎ ³ -8 Is a Mediator of LTP and Learning and Memory. Neuron, 2016, 92, 75-83.	3.8	101
25	Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release. Neuron, 2016, 92, 479-492.	3.8	162
26	Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination. ELife, 2016, 5, .	2.8	33
27	ANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization. Journal of Neuroscience, 2015, 35, 8986-8996.	1.7	36
28	Coordination between Translation and Degradation Regulates Inducibility of mGluR-LTD. Cell Reports, 2015, 10, 1459-1466.	2.9	39
29	Selective Dysregulation of Hippocampal Inhibition in the Mouse Lacking Autism Candidate Gene <i>CNTNAP2</i> . Journal of Neuroscience, 2015, 35, 14681-14687.	1.7	61
30	Actinin-4 Governs Dendritic Spine Dynamics and Promotes Their Remodeling by Metabotropic Glutamate Receptors. Journal of Biological Chemistry, 2015, 290, 15909-15920.	1.6	41
31	A Combined Optogenetic-Knockdown Strategy Reveals a Major Role of Tomosyn in Mossy Fiber Synaptic Plasticity. Cell Reports, 2015, 12, 396-404.	2.9	32
32	APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses. ELife, 2015, 4, e09743.	2.8	73
33	Compartment-Specific Modulation of GABAergic Synaptic Transmission by TRPV1 Channels in the Dentate Gyrus. Journal of Neuroscience, 2014, 34, 16621-16629.	1.7	50
34	Endogenous cannabinoid signaling at inhibitory interneurons. Current Opinion in Neurobiology, 2014, 26, 42-50.	2.0	41
35	The Rac1 Inhibitor NSC23766 Suppresses CREB Signaling by Targeting NMDA Receptor Function. Journal of Neuroscience, 2014, 34, 14006-14012.	1.7	23
36	Synucleins Regulate the Kinetics of Synaptic Vesicle Endocytosis. Journal of Neuroscience, 2014, 34, 9364-9376.	1.7	237

#	Article	IF	Citations
37	Bidirectional NMDA receptor plasticity controls CA3 output and heterosynaptic metaplasticity. Nature Neuroscience, 2013, 16, 1049-1059.	7.1	55
38	CA1 Pyramidal Cell Theta-Burst Firing Triggers Endocannabinoid-Mediated Long-Term Depression at Both Somatic and Dendritic Inhibitory Synapses. Journal of Neuroscience, 2013, 33, 13743-13757.	1.7	41
39	RNA-binding protein Sam68 controls synapse number and local \hat{l}^2 -actin mRNA metabolism in dendrites. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3125-3130.	3.3	55
40	Presenilin-ryanodine receptor connection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14825-14826.	3.3	10
41	Synaptotagmin-12 Phosphorylation by cAMP-Dependent Protein Kinase Is Essential for Hippocampal Mossy Fiber LTP. Journal of Neuroscience, 2013, 33, 9769-9780.	1.7	36
42	Neuroligin 1 Drives Synaptic and Behavioral Maturation through Intracellular Interactions. Journal of Neuroscience, 2013, 33, 9364-9384.	1.7	23
43	REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nature Neuroscience, 2012, 15, 1382-1390.	7.1	176
44	Neto1 and Neto2: auxiliary subunits that determine key properties of native kainate receptors. Journal of Physiology, 2012, 590, 2217-2223.	1.3	57
45	Endocannabinoid Signaling and Synaptic Function. Neuron, 2012, 76, 70-81.	3.8	824
46	Presynaptic LTP and LTD of Excitatory and Inhibitory Synapses. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005728-a005728.	2.3	129
47	Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Current Opinion in Neurobiology, 2012, 22, 496-508.	2.0	270
48	Estradiol Attenuates Ischemia-Induced Death of Hippocampal Neurons and Enhances Synaptic Transmission in Aged, Long-Term Hormone-Deprived Female Rats. PLoS ONE, 2012, 7, e38018.	1.1	20
49	The Battle over Inhibitory Synaptic Plasticity in Satiety Brain Circuits. Neuron, 2011, 71, 385-387.	3.8	0
50	Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1. Nature Neuroscience, 2011, 14, 866-873.	7.1	111
51	Long-term plasticity at inhibitory synapses. Current Opinion in Neurobiology, 2011, 21, 328-338.	2.0	191
52	Rab3B protein is required for long-term depression of hippocampal inhibitory synapses and for normal reversal learning. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14300-14305.	3.3	62
53	The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. Journal of Neurophysiology, 2011, 105, 1089-1101.	0.9	86
54	Endocannabinoid Mediated Long-Term Depression at Inhibitory Synapses. , 2011, , 149-166.		O

#	Article	IF	Citations
55	TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nature Neuroscience, 2010, 13, 1511-1518.	7.1	291
56	Dopaminergic Modulation of Endocannabinoid-Mediated Plasticity at GABAergic Synapses in the Prefrontal Cortex. Journal of Neuroscience, 2010, 30, 7236-7248.	1.7	129
57	Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6504-6509.	3.3	168
58	$\hat{l}\pm\hat{l}^2\hat{l}^3$ -Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19573-19578.	3.3	261
59	Age-Dependent Impairment of Cognitive and Synaptic Function in the htau Mouse Model of Tau Pathology. Journal of Neuroscience, 2009, 29, 10741-10749.	1.7	306
60	Endocannabinoid Signaling and Long-Term Synaptic Plasticity. Annual Review of Physiology, 2009, 71, 283-306.	5.6	400
61	ELKS2α/CAST Deletion Selectively Increases Neurotransmitter Release at Inhibitory Synapses. Neuron, 2009, 64, 227-239.	3.8	96
62	Long-Term Potentiation Selectively Expressed by NMDA Receptors at Hippocampal Mossy Fiber Synapses. Neuron, 2008, 57, 108-120.	3.8	134
63	The Ups and Downs of Translation-Dependent Plasticity. Neuron, 2008, 59, 1-3.	3.8	11
64	Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses. Neuron, 2008, 60, 1082-1094.	3.8	68
65	Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus. Neuropharmacology, 2008, 54, 68-78.	2.0	55
66	RIM1α and RIM1β Are Synthesized from Distinct Promoters of the <i>RIM1</i> Gene to Mediate Differential But Overlapping Synaptic Functions. Journal of Neuroscience, 2008, 28, 13435-13447.	1.7	84
67	RIM1 \hat{l} ± phosphorylation at serine-413 by protein kinase A is not required for presynaptic long-term plasticity or learning. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14680-14685.	3.3	69
68	Interneuron activity controls endocannabinoid-mediated presynaptic plasticity through calcineurin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10250-10255.	3.3	102
69	Endocannabinoid-Mediated Long-Term Plasticity Requires cAMP/PKA Signaling and RIM1α. Neuron, 2007, 54, 801-812.	3.8	238
70	Endocannabinoid-Mediated Long-Term Plasticity Requires cAMP/PKA Signaling and RIM1α. Neuron, 2007, 55, 169.	3.8	2
71	ENDOCANNABINOID-MEDIATED SYNAPTIC PLASTICITY IN THE CNS. Annual Review of Neuroscience, 2006, 29, 37-76.	5.0	691
72	The CB1 cannabinoid receptor mediates glutamatergic synaptic suppression in the hippocampus. Neuroscience, 2006, 139, 795-802.	1.1	129

#	Article	IF	CITATIONS
73	Biochemical confinements without walls in aspiny neurons. Nature Neuroscience, 2006, 9, 719-720.	7.1	3
74	Protein kinase A regulates calcium permeability of NMDA receptors. Nature Neuroscience, 2006, 9, 501-510.	7.1	275
75	Redundant functions of RIM1α and RIM2α in Ca2+-triggered neurotransmitter release. EMBO Journal, 2006, 25, 5852-5863.	3.5	120
76	Transsynaptic Dialogue Between Excitatory and Inhibitory Hippocampal Synapses via Endocannabinoids. , 2005, , 221-235.		0
77	Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12230-12235.	3.3	220
78	A single in-vivo exposure to î"9THC blocks endocannabinoid-mediated synaptic plasticity. Nature Neuroscience, 2004, 7, 585-586.	7.1	196
79	Double-knockout mice for Â- and Â-synucleins: Effect on synaptic functions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14966-14971.	3.3	392
80	Endocannabinoid-Mediated Metaplasticity in the Hippocampus. Neuron, 2004, 43, 871-881.	3.8	274
81	Heterosynaptic LTD of Hippocampal GABAergic Synapses. Neuron, 2003, 38, 461-472.	3.8	581
82	Heterosynaptic LTD of Hippocampal GABAergic Synapses. Neuron, 2003, 38, 997.	3.8	3
83	Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9538-9543.	3.3	177
84	RIM1 $\hat{l}\pm$ forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature, 2002, 415, 321-326.	13.7	552
85	RIM1α is required for presynaptic long-term potentiation. Nature, 2002, 415, 327-330.	13.7	377
86	Mice Lacking α-Synuclein Display Functional Deficits in the Nigrostriatal Dopamine System. Neuron, 2000, 25, 239-252.	3.8	1,573
87	Multiple and Opposing Roles of Cholinergic Transmission in the Main Olfactory Bulb. Journal of Neuroscience, 1999, 19, 9180-9191.	1.7	144
88	Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature, 1998, 392, 601-605.	13.7	450
89	Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature, 1997, 388, 182-186.	13.7	504
90	Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature, 1997, 388, 590-593.	13.7	336

#	Article	IF	CITATIONS
91	Characterizing the Site and Mode of Action of Dynorphin at Hippocampal Mossy Fiber Synapses in the Guinea Pig. Journal of Neuroscience, 1996, 16, 5942-5950.	1.7	41
92	Experimental analysis of the method of †peeling' exponentials for measuring passive electrical properties of mammalian motoneurons. Brain Research, 1995, 675, 241-248.	1.1	17
93	Evidence against a role for metabotropic glutamate receptors in mossy fiber LTP: the use of mutant mice and pharmacological antagonists. Neuropharmacology, 1995, 34, 1567-1572.	2.0	43
94	Pharmacology of metabotropic glutamate receptors at the mossy fiber synapses of the guinea pig hippocampus. Neuropharmacology, 1995, 34, 965-971.	2.0	98
95	The control of jaw-opener motoneurons during active sleep. Brain Research, 1994, 653, 31-38.	1.1	58
96	The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron, 1994, 12, 261-269.	3.8	317
97	28 The role of Ca2+ in transmitter release and long-term potentiation at hippocampal mossy fiber synapses. Advances in Second Messenger and Phosphoprotein Research, 1994, 29, 497-505.	4.5	6
98	A medullary inhibitory region for trigeminal motoneurons in the cat. Brain Research, 1991, 549, 346-349.	1.1	20
99	Strychnine blockade of the non-reciprocal inhibition of trigeminal motoneurons induced by stimulation of the parvocellular reticular formation. Brain Research, 1991, 567, 346-349.	1.1	18
100	Non-reciprocal postsynaptic inhibition of digastric motoneurons. Brain Research, 1990, 535, 339-342.	1.1	9