List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7100953/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Fredkin gates in simple reversible cellular automata. International Journal of Parallel, Emergent and<br>Distributed Systems, 2022, 37, 249-272.                | 0.7 | 1         |
| 2  | An instruction set for reversible Turing machines. Acta Informatica, 2021, 58, 377-396.                                                                         | 0.5 | 0         |
| 3  | Reversible Logic Element with Memory as an Alternative Logical Device. , 2021, , 31-57.                                                                         |     | Ο         |
| 4  | A universal non-conservative reversible elementary triangular partitioned cellular automaton that shows complex behavior. Natural Computing, 2019, 18, 413-428. | 1.8 | 8         |
| 5  | Logical Gates via Gliders Collisions. Emergence, Complexity and Computation, 2018, , 199-220.                                                                   | 0.2 | 1         |
| 6  | Reversible Computing. , 2018, , 463-488.                                                                                                                        |     | 0         |
| 7  | Reversible Cellular Automata. , 2018, , 1-25.                                                                                                                   |     | Ο         |
| 8  | Reversible Cellular Automata. , 2018, , 105-128.                                                                                                                |     | 0         |
| 9  | A Snapshot of My Life. Emergence, Complexity and Computation, 2018, , 1-3.                                                                                      | 0.2 | 0         |
| 10 | East-West paths to unconventional computing. Progress in Biophysics and Molecular Biology, 2017, 131, 469-493.                                                  | 1.4 | 14        |
| 11 | Two Small Universal Reversible Turing Machines. Emergence, Complexity and Computation, 2017, , 221-237.                                                         | 0.2 | 5         |
| 12 | Theory of Reversible Computing. Monographs in Theoretical Computer Science, 2017, , .                                                                           | 0.6 | 39        |
| 13 | Reversible Cellular Automata. , 2017, , 1-25.                                                                                                                   |     | Ο         |
| 14 | Reversible Computing. , 2017, , 1-26.                                                                                                                           |     | 0         |
| 15 | An 8-State Simple Reversible Triangular Cellular Automaton that Exhibits Complex Behavior. Lecture<br>Notes in Computer Science, 2016, , 170-184.               | 1.0 | 6         |
| 16 | General design of reversible sequential machines based on reversible logic elements. Theoretical<br>Computer Science, 2015, 568, 19-27.                         | 0.5 | 6         |
| 17 | Universal Reversible Turing Machines with a Small Number of Tape Symbols. Fundamenta Informaticae, 2015, 138, 17-29.                                            | 0.3 | 5         |
| 18 | Constructing Reversible Turing Machines by Reversible Logic Element with Memory. Emergence,<br>Complexity and Computation, 2015, 127-138.                       | 0.2 | 4         |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reversible Cellular Automata. , 2015, , 1-23.                                                                                                                               |     | О         |
| 20 | Reversible Computing. , 2015, , 1-24.                                                                                                                                       |     | 0         |
| 21 | Reversibility in space-bounded computation. International Journal of General Systems, 2014, 43, 697-712.                                                                    | 1.2 | 3         |
| 22 | How Can We Construct Reversible Machines Out of Reversible Logic Element with Memory?. Lecture<br>Notes in Computer Science, 2014, , 352-366.                               | 1.0 | 0         |
| 23 | Brownian Circuits. ACM Journal on Emerging Technologies in Computing Systems, 2013, 9, 1-24.                                                                                | 1.8 | 32        |
| 24 | Generalized Chat Noir is PSPACE-Complete. IEICE Transactions on Information and Systems, 2013, E96.D, 502-505.                                                              | 0.4 | 2         |
| 25 | A Deterministic Two-Way Multi-head Finite Automaton Can Be Converted into a Reversible One with the Same Number of Heads. Lecture Notes in Computer Science, 2013, , 29-43. | 1.0 | 13        |
| 26 | Computation in reversible cellular automata. International Journal of General Systems, 2012, 41, 569-581.                                                                   | 1.2 | 4         |
| 27 | Finding the Minimum Number of Face Guards is NP-Hard. IEICE Transactions on Information and Systems, 2012, E95.D, 2716-2719.                                                | 0.4 | 4         |
| 28 | Generalized Shisen-Sho is NP-Complete. IEICE Transactions on Information and Systems, 2012, E95.D, 2712-2715.                                                               | 0.4 | 1         |
| 29 | Universality of One-Dimensional Reversible and Number-Conserving Cellular Automata. Electronic<br>Proceedings in Theoretical Computer Science, EPTCS, 2012, 90, 142-150.    | 0.8 | 2         |
| 30 | Lower Bound of Face Guards of Polyhedral Terrains. Journal of Information Processing, 2012, 20, 435-437.                                                                    | 0.3 | 6         |
| 31 | Reversible Cellular Automata. , 2012, , 231-257.                                                                                                                            |     | 8         |
| 32 | Design of 1-tape 2-symbol reversible Turing machines based on reversible logic elements. Theoretical<br>Computer Science, 2012, 460, 78-88.                                 | 0.5 | 8         |
| 33 | Reversible Computing. , 2012, , 2685-2701.                                                                                                                                  |     | 4         |
| 34 | Reversible Computing Systems, Logic Circuits, and Cellular Automata. , 2012, , .                                                                                            |     | 5         |
| 35 | A Polynomial-Time Reduction from the 3SAT Problem to the Generalized String Puzzle Problem.<br>Algorithms, 2012, 5, 261-272.                                                | 1.2 | 3         |
| 36 | Sequential and maximally parallel multiset rewriting: reversibility and determinism. Natural Computing, 2012, 11, 95-106.                                                   | 1.8 | 10        |

# ARTICLE IF CITATIONS Editorial for special issue on unconventional computation. Natural Computing, 2012, 11, 65-66. 1.8 Reversible Cellular Automata., 2012, 2668-2684. 38 1 Two-Way Reversible Multi-Head Finite Automata. Fundamenta Informaticae, 2011, 110, 241-254. Simulating reversible Turing machines and cyclic tag systems by one-dimensional reversible cellular 40 0.5 12 automata. Theoretical Computer Science, 2011, 412, 3856-3865. NP-Hard and k-EXPSPACE-Hard Cast Puzzles. IEICE Transactions on Information and Systems, 2010, E93-D, 0.4 2995-3004. Universality Issues in Reversible Computing Systems and Cellular Automata (Extended Abstract). Electronic Notes in Theoretical Computer Science, 2010, 253, 23-31. 42 0.9 1 Computation with Competing Patterns inÂLife-Like Automaton., 2010, , 547-572. On Reversibility and Determinism in P Systems. Lecture Notes in Computer Science, 2010, , 158-168. 1.0 44 6 Majority Adder Implementation by Competing Patterns in Life-Like Rule B2/S2345. Lecture Notes in 1.0 Computer Science, 2010, , 93-104. Universality of 2-State 3-Symbol Reversible Logic Elements â€" A Direct Simulation Method of a Rotary 46 0.2 9 Element. Proceedings in Information and Communications Technology, 2010, , 252-259. On the Non-existance of Rotation-Symmetric von Neumann Neighbor Number-Conserving Cellular Automata of Which the State Number is Less than Four. IEICE Transactions on Information and 0.4 Systems, 2009, E92-D, 255-257. 48 Reversible Cellular Automata., 2009, , 7679-7695. 2 Computational Complexity of Cast Puzzles. Lecture Notes in Computer Science, 2009, , 122-131. 1.0 Reversible computing and cellular automataâ€"A survey. Theoretical Computer Science, 2008, 395, 50 0.5 132 101-131. Computing by Swarm Networks. Lecture Notes in Computer Science, 2008, , 50-59. An Asynchronous Cellular Automaton Implementing 2-State 2-Input 2-Output Reversed-Twin Reversible 52 1.0 27 Elements. Lecture Notes in Computer Science, 2008, , 67-76. A Recursive Padding Technique on Nondeterministic Cellular Automata. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2008, E91-A, 2335-2340. Drift-compensated data acquisition performed at room temperature with frequency modulation 54 1.5 94 atomic force microscopy. Applied Physics Letters, 2007, 90, 203103.

**KENICHI MORITA** 

| #  | Article                                                                                                                                                                                                           | IF          | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| 55 | Translational lemmas for DLOGTIME-uniform circuits, alternating TMs, and PRAMs. Acta Informatica, 2007, 44, 345-359.                                                                                              | 0.5         | 1             |
| 56 | A Universal Reversible Turing Machine. Lecture Notes in Computer Science, 2007, , 90-98.                                                                                                                          | 1.0         | 24            |
| 57 | A Time Hierarchy Theorem for Nondeterministic Cellular Automata. , 2007, , 511-520.                                                                                                                               |             | 2             |
| 58 | Complexity of evolution languages of the elementary cellular automaton of rule 146. Applied Mathematics, 2006, 21, 418-428.                                                                                       | 0.6         | 3             |
| 59 | PATTERN GENERATION AND PARSING BY ARRAY GRAMMARS. Series in Machine Perception and Artificial Intelligence, 2006, , 260-273.                                                                                      | 0.1         | 0             |
| 60 | Translational Lemmas for Alternating TMs and PRAMs. Lecture Notes in Computer Science, 2005, , 137-148.                                                                                                           | 1.0         | 2             |
| 61 | Hierarchies of DLOGTIME-Uniform Circuits. Lecture Notes in Computer Science, 2005, , 211-222.                                                                                                                     | 1.0         | 3             |
| 62 | On simulations of self-reproducing cellular automata with shape-encoding mechanism. Electronics<br>and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi) Tj ETQq0 | 0 OorgBT /( | Overlock 10 T |
| 63 | Asynchronous game of life. Physica D: Nonlinear Phenomena, 2004, 194, 369-384.                                                                                                                                    | 1.3         | 59            |
| 64 | Universal delay-insensitive circuits with bidirectional and buffering lines. IEEE Transactions on Computers, 2004, 53, 1034-1046.                                                                                 | 2.4         | 22            |
| 65 | Simulation of one-dimensional cellular automata by uniquely parallel parsable grammars. Theoretical<br>Computer Science, 2003, 304, 185-200.                                                                      | 0.5         | 1             |
| 66 | A New Universal Logic Element for Reversible Computing. Topics in Computer Mathematics, 2003, , 285-294.                                                                                                          | 0.0         | 11            |
| 67 | Self-Reproduction in Three-Dimensional Reversible Cellular Space. Artificial Life, 2002, 8, 155-174.                                                                                                              | 1.0         | 44            |
| 68 | A quadratic speedup theorem for iterative arrays. Acta Informatica, 2002, 38, 847-858.                                                                                                                            | 0.5         | 1             |
| 69 | Constructible functions in cellular automata and their applications to hierarchy results. Theoretical Computer Science, 2002, 270, 797-809.                                                                       | 0.5         | 24            |
| 70 | Embedding a Logically Universal Model and a Self-Reproducing Model into Number-Conserving<br>Cellular Automata. Lecture Notes in Computer Science, 2002, , 164-175.                                               | 1.0         | 6             |
| 71 | Universal Computing in Reversible and Number-Conserving Two-Dimensional Cellular Spaces. , 2002, , 161-199.                                                                                                       |             | 21            |
| 72 | Cellular Automata and Artificial Life. Nonlinear Phenomena and Complex Systems, 2001, , 151-200.                                                                                                                  | 0.0         | 11            |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Number-Conserving Reversible Cellular Automata and Their Computation-Universality. RAIRO -<br>Theoretical Informatics and Applications, 2001, 35, 239-258.                                        | 0.5 | 7         |
| 74 | NP problems are tractable in the space of cellular automata in the hyperbolic plane. Theoretical Computer Science, 2001, 259, 99-128.                                                             | 0.5 | 34        |
| 75 | A Three-Dimensional Uniquely Parsable Array Grammar that Generates and Parses Cubes. Electronic<br>Notes in Theoretical Computer Science, 2001, 46, 339-354.                                      | 0.9 | Ο         |
| 76 | A Simple Universal Logic Element and Cellular Automata for Reversible Computing. Lecture Notes in<br>Computer Science, 2001, , 102-113.                                                           | 1.0 | 59        |
| 77 | Speeding-Up Cellular Automata by Alternations. Lecture Notes in Computer Science, 2001, , 240-251.                                                                                                | 1.0 | Ο         |
| 78 | GENERATION AND PARSING OF MORPHISM LANGUAGES BY UNIQUELY PARALLEL PARSABLE GRAMMARS. , 2001, , 303-314.                                                                                           |     | 1         |
| 79 | A computation-universal two-dimensional 8-state triangular reversible cellular automaton.<br>Theoretical Computer Science, 2000, 231, 181-191.                                                    | O.5 | 53        |
| 80 | Uniquely Parsable Unification Grammars and Their Parser Implemented in Prolog. Grammars, 2000, 3,<br>63-81.                                                                                       | 0.4 | 0         |
| 81 | CHARACTERIZING THE ABILITY OF PARALLEL ARRAY GENERATORS ON REVERSIBLE PARTITIONED CELLULAR AUTOMATA. International Journal of Pattern Recognition and Artificial Intelligence, 1999, 13, 523-538. | 0.7 | 4         |
| 82 | Uniquely parsable array grammars for generating and parsing connected patterns. Pattern<br>Recognition, 1999, 32, 269-276.                                                                        | 5.1 | 3         |
| 83 | Universality of Reversible Hexagonal Cellular Automata. RAIRO - Theoretical Informatics and Applications, 1999, 33, 535-550.                                                                      | 0.5 | 20        |
| 84 | On time-constructible functions in one-dimensional cellular automata. Lecture Notes in Computer<br>Science, 1999, , 316-326.                                                                      | 1.0 | 6         |
| 85 | A hierarchy of uniquely parsable grammar classes and deterministic acceptors. Acta Informatica, 1997, 34, 389-410.                                                                                | 0.5 | 10        |
| 86 | Logical universality and self-reproduction in reversible cellular automata. Lecture Notes in Computer<br>Science, 1997, , 152-166.                                                                | 1.0 | 6         |
| 87 | Firing squad synchronization problem in reversible cellular automata. Theoretical Computer Science,<br>1996, 165, 475-482.                                                                        | 0.5 | 36        |
| 88 | Universality of a reversible two-counter machine. Theoretical Computer Science, 1996, 168, 303-320.                                                                                               | 0.5 | 51        |
| 89 | Self-reproduction in a reversible cellular space. Theoretical Computer Science, 1996, 168, 337-366.                                                                                               | 0.5 | 45        |
| 90 | Reversible simulation of one-dimensional irreversible cellular automata. Theoretical Computer<br>Science, 1995, 148, 157-163.                                                                     | 0.5 | 66        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | PARALLEL GENERATION AND PARSING OF ARRAY LANGUAGES USING REVERSIBLE CELLULAR AUTOMATA.<br>International Journal of Pattern Recognition and Artificial Intelligence, 1994, 08, 543-561. | 0.7 | 14        |
| 92  | TWO-DIMENSIONAL UNIQUELY PARSABLE ISOMETRIC ARRAY GRAMMARS. International Journal of Pattern Recognition and Artificial Intelligence, 1992, 06, 301-313.                               | 0.7 | 3         |
| 93  | Computation-universality of one-dimensional one-way reversible cellular automata. Information Processing Letters, 1992, 42, 325-329.                                                   | 0.4 | 46        |
| 94  | Parallel generation and parsing of array languages using reversible cellular automata. Lecture Notes in Computer Science, 1992, , 213-230.                                             | 1.0 | 4         |
| 95  | TWO-DIMENSIONAL UNIQUELY PARSABLE ISOMETRIC ARRAY GRAMMARS. Series in Machine Perception and Artificial Intelligence, 1992, , 91-103.                                                  | 0.1 | 1         |
| 96  | TWO-DIMENSIONAL THREE-WAY ARRAY GRAMMARS AND THEIR ACCEPTORS. International Journal of Pattern Recognition and Artificial Intelligence, 1989, 03, 353-376.                             | 0.7 | 2         |
| 97  | CONTEXT-SENSITIVITY OF TWO-DIMENSIONAL REGULAR ARRAY GRAMMARS. International Journal of Pattern Recognition and Artificial Intelligence, 1989, 03, 295-319.                            | 0.7 | 17        |
| 98  | An extended syllogistic system with conjunctive and complementary terms, and its completeness proof. Systems and Computers in Japan, 1989, 20, 80-95.                                  | 0.2 | 0         |
| 99  | CONTEXT-SENSITIVITY OF TWO-DIMENSIONAL REGULAR ARRAY GRAMMARS. , 1989, , 17-41.                                                                                                        |     | 7         |
| 100 | TWO-DIMENSIONAL THREE-WAY ARRAY GRAMMARS AND THEIR ACCEPTORS. , 1989, , 75-98.                                                                                                         |     | 0         |
| 101 | An efficient reasoning method for syllogism and its application to knowledge processing. Systems and Computers in Japan, 1988, 19, 20-31.                                              | 0.2 | 3         |
| 102 | On two-dimensional pattern-matching languages and their decision problems. Information Sciences, 1986, 40, 53-66.                                                                      | 4.0 | 1         |
| 103 | On the Two-Dimensional Model of Biological System. Japanese Journal of Applied Physics, 1985, 24, 99.                                                                                  | 0.8 | 0         |
| 104 | The complexity of some decision problems about two-dimensional array grammars. Information Sciences, 1983, 30, 241-262.                                                                | 4.0 | 7         |
| 105 | Deterministic one-way simulation of two-way real-time cellular automata and its related problems.<br>Information Processing Letters, 1982, 14, 158-161.                                | 0.4 | 46        |
| 106 | Reversible Logic Elements with Memory and Their Universality. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 128, 3-14.                                             | 0.8 | 0         |