
## Rocio M Rivera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7100911/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Human Molecular Genetics, 2008, 17, 1-14.                                             | 1.4 | 303       |
| 2  | Adverse impact of heat stress on embryo production: causes and strategies for mitigation.<br>Theriogenology, 2001, 55, 91-103.                                                                                         | 0.9 | 149       |
| 3  | Large offspring syndrome. Epigenetics, 2013, 8, 591-601.                                                                                                                                                               | 1.3 | 125       |
| 4  | Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4618-4623.    | 3.3 | 114       |
| 5  | Epigenetics in fertilization and preimplantation embryo development. Progress in Biophysics and Molecular Biology, 2013, 113, 423-432.                                                                                 | 1.4 | 68        |
| 6  | Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing. Epigenetics, 2016, 11, 501-516.                                                                                  | 1.3 | 65        |
| 7  | Deleterious Actions of Gossypol on Bovine Spermatozoa, Oocytes, and Embryos1. Biology of Reproduction, 1997, 57, 901-907.                                                                                              | 1.2 | 55        |
| 8  | Alterations in Ultrastructural Morphology of Two-Cell Bovine Embryos Produced In Vitro and In Vivo<br>Following a Physiologically Relevant Heat Shock1. Biology of Reproduction, 2003, 69, 2068-2077.                  | 1.2 | 52        |
| 9  | The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo.<br>Molecular Reproduction and Development, 2018, 85, 90-105.                                                           | 1.0 | 50        |
| 10 | Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. Journal of Biomedical Science, 2012, 19, 95. | 2.6 | 48        |
| 11 | Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice. Molecular Reproduction and Development, 2015, 82, 207-217.              | 1.0 | 48        |
| 12 | Epigenetics in humans: an overview. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 493-499.                                                                                                         | 1.2 | 42        |
| 13 | Heterogeneous distribution of histone methylation in mature human sperm. Journal of Assisted<br>Reproduction and Genetics, 2014, 31, 45-49.                                                                            | 1.2 | 39        |
| 14 | Production and Culture of the Bovine Embryo. Methods in Molecular Biology, 2019, 2006, 115-129.                                                                                                                        | 0.4 | 39        |
| 15 | Reorganization of Microfilaments and Microtubules by Thermal Stress in Two-Cell Bovine Embryos1.<br>Biology of Reproduction, 2004, 70, 1852-1862.                                                                      | 1.2 | 33        |
| 16 | Altered microRNA expression profiles in large offspring syndrome and Beckwith-Wiedemann syndrome. Epigenetics, 2019, 14, 850-876.                                                                                      | 1.3 | 32        |
| 17 | Colony-stimulating factor 2 acts from days 5 to 7 of development to modify programming of the bovine conceptus at day 86 of gestationâ€. Biology of Reproduction, 2017, 96, 743-757.                                   | 1.2 | 30        |
| 18 | Global misregulation of genes largely uncoupled to DNA methylome epimutations characterizes a congenital overgrowth syndrome. Scientific Reports, 2017, 7, 12667.                                                      | 1.6 | 30        |

ROCIO M RIVERA

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Oxamflatin Treatment Enhances Cloned Porcine Embryo Development and Nuclear Reprogramming <sup<br>/&gt;. Cellular Reprogramming, 2015, 17, 28-40.</sup<br>                                         | 0.5 | 29        |
| 20 | Locus-Specific DNA Methylation Reprogramming During Early Porcine Embryogenesis1. Biology of Reproduction, 2013, 88, 48.                                                                           | 1.2 | 27        |
| 21 | Genome-wide identification and analysis of A-to-I RNA editing events in bovine by transcriptome sequencing. PLoS ONE, 2018, 13, e0193316.                                                          | 1.1 | 27        |
| 22 | Overgrowth Syndrome. Veterinary Clinics of North America - Food Animal Practice, 2019, 35, 265-276.                                                                                                | 0.5 | 25        |
| 23 | Differences between Brahman and Holstein cows in response to estrus synchronization,<br>superovulation and resistance of embryos to heat shock. Animal Reproduction Science, 2003, 78, 13-24.      | 0.5 | 22        |
| 24 | Maternal Hyperleptinemia Is Associated with Male Offspring's Altered Vascular Function and Structure in Mice. PLoS ONE, 2016, 11, e0155377.                                                        | 1.1 | 15        |
| 25 | Consequences of assisted reproductive techniques on the embryonic epigenome in cattle.<br>Reproduction, Fertility and Development, 2020, 32, 65.                                                   | 0.1 | 14        |
| 26 | Effects of the use of assisted reproduction and high-caloric diet consumption on body weight and cardiovascular health of juvenile mouse offspring. Reproduction, 2014, 147, 111-123.              | 1.1 | 12        |
| 27 | Short Communication: Seasonal Effects on Development of Bovine Embryos Produced by In Vitro Fertilization in a Hot Environment. Journal of Dairy Science, 2000, 83, 305-307.                       | 1.4 | 11        |
| 28 | Epigenetic Aspects of Fertilization and Preimplantation Development in Mammals: Lessons from the<br>Mouse. Systems Biology in Reproductive Medicine, 2010, 56, 388-404.                            | 1.0 | 11        |
| 29 | Effects of the Use of Assisted Reproductive Technologies and an Obesogenic Environment on<br>Resistance Artery Function and Diabetes Biomarkers in Mice Offspring. PLoS ONE, 2014, 9, e112651.     | 1.1 | 8         |
| 30 | Bovine preimplantation embryo development is affected by the stiffness of the culture substrate.<br>Molecular Reproduction and Development, 2013, 80, 184-184.                                     | 1.0 | 7         |
| 31 | Determination of Allelic Expression of H19 in Pre- and Peri-Implantation Mouse Embryos1. Biology of Reproduction, 2013, 88, 97.                                                                    | 1.2 | 7         |
| 32 | Modeling allele-specific expression at the gene and SNP levels simultaneously by a Bayesian logistic mixed regression model. BMC Bioinformatics, 2019, 20, 530.                                    | 1.2 | 7         |
| 33 | Conditions of embryo culture from days 5 to 7 of development alter the DNA methylome of the bovine fetus at day 86 of gestation. Journal of Assisted Reproduction and Genetics, 2020, 37, 417-426. | 1.2 | 7         |
| 34 | The effects of biological aging on global DNA methylation, histone modification, and epigenetic modifiers in the mouse germinal vesicle stage oocyte. Animal Reproduction, 2018, 15, 1253-1267.    | 0.4 | 7         |
| 35 | Serum supplementation during bovine embryo culture affects their development and proliferation through macroautophagy and endoplasmic reticulum stress regulation. PLoS ONE, 2021, 16, e0260123.   | 1.1 | 7         |
| 36 | Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics, 2022, 17, 1477-1496.                                                             | 1.3 | 7         |

**ROCIO M RIVERA** 

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Bayesian Hidden Markov Model for Detecting Differentially Methylated Regions. Biometrics, 2019, 75, 663-673.                                                          | 0.8 | 6         |
| 38 | Allele-specific aberration of imprinted domain chromosome architecture associates with large offspring syndrome. IScience, 2022, 25, 104269.                            | 1.9 | 6         |
| 39 | Identification of large offspring syndrome during pregnancy through ultrasonography and maternal blood transcriptome analyses. Scientific Reports, 2022, 12, .          | 1.6 | 6         |
| 40 | Characterization of tRNA expression profiles in large offspring syndrome. BMC Genomics, 2022, 23, 273.                                                                  | 1.2 | 5         |
| 41 | Maternal DHA supplementation influences sex-specific disruption of placental gene expression following early prenatal stress. Biology of Sex Differences, 2021, 12, 10. | 1.8 | 4         |
| 42 | Detecting differentially expressed genes for syndromes by considering change in mean and dispersion simultaneously. BMC Bioinformatics, 2018, 19, 330.                  | 1.2 | 2         |
| 43 | Using online tools at the Bovine Genome Database to manually annotate genes in the new reference genome. Animal Genetics, 2020, 51, 675-682.                            | 0.6 | 2         |
| 44 | When six is not a half dozen: Representation of changes in H4K5ac during meiotic progression in mouse oocytes. Molecular Reproduction and Development, 2015, 82, 1-1.   | 1.0 | 1         |